Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Калибровочные симметрии




Понятие симметрии

Симметрия как философская категория означает про­цесс существования и становления тождественных момен­тов в определенных условиях и определенных отношени­ях между различными и противоположными состояниями явлений мира. Это означает, что, изучая симметрию каких-либо систем, необходимо рассматривать их поведение при различных преобразованиях. То есть из всей совокупнос-


ти преобразований выделяются такие, которые оставляют неизменными, инвариантными некоторые функции, соответ­ствующие рассматриваемым системам. Самым емким, удоб­ным и простым языком для выражения симметрий ока­зался математический язык. Математическая теория, рас­сматривающая такие преобразования или совокупности преобразований, называется математиками теорией групп. Корни идеи теории групп восходят к работам великих ма­тематиков П. Руффини (1765-1822), Н. Абеля (1802-1829) и Эвариста Галуа (1811-1832). Одной из центральных за­дач классической алгебры того времени была задача о на­хождении корней алгебраического уравнения n-степени по известным коэффициентам, входящим в это уравнение. Руффини, а впоследствии Абель и Галуа доказали неразре­шимость в радикалах общего алгебраического уравнения пятой и более степени. Так что проблема общего изучения закона образования корней из известных коэффициентов не была решена, несмотря на многочисленные усилия матема­тиков. Результат был получен Эваристом Галуа лишь на основе введения абстрактных понятий более высокой сте­пени общности, на основе создания совершенно новой ал­гебраической теории, развившейся впоследствии в теорию групп. Интерес к теории групп со стороны Феликса Клей­на передался норвежскому математику М. Ли, который и явился создателем математического аппарата теории групп (групп Ли) и их инвариантов, ставшего важнейшим инструментом современной теоретической физики.

В 2.4 уже говорилось о том, что при создании общей те­ории относительности Эйнштейн обнаружил, что попытки включения тяготения в специальную теорию относительно­сти (СТО) наталкиваются на серьезные трудности, связанные с тем, что в этом случае не работает глобальная лоренц-ин-вариантность. Поставив во главу угла задачу распростране­ния принципа инвариантности применительно к любым системам отсчета, в том числе и к неинерциальным, Эйн­штейн приходит к выводу, что лоренц-инвариантность не является более глобальным свойством, но в то же время продолжает играть центральную роль в теории в качестве локальной инвариантности. А это означает, что, если гали-

8. Зак 671 225


леево пространство максимально однородно, то в общей теории относительности такого рода однородность суще­ствует локально, в бесконечно малом, то есть здесь долж­на существовать возможность свободного изменения мас­штаба от одной точки пространства к другой, что означает кривизну траектории, отклонение ее от прямой линии. Ус­ловие выполнения инвариантности физических законов от­носительно локальных преобразований требует введения гравитационного поля, роль которого состоит в компенсации эффектов, связанных с этим изменением масштаба или, как говорят, вызванных калибровкой от точки к точке.

Термин «калибровка» вошел в физику из жаргона же­лезнодорожников, употребляемый в значении перехода с узкой колеи на широкую. Под калибровкой, по аналогии с железнодорожной терминологией, первоначально понима­лось именно изменение уровня или масштаба. В СТО за­коны физики не изменяются относительно переноса (или сдвига) при калибровке расстояния. То есть траектории движения остаются прямолинейными, пространственный сдвиг оказывается одинаковым у всех точек пространства. Иначе говоря, здесь работают глобальные калибровочные преобразования. В общей теории относительности инвари­антность физических законов достигается только относи­тельно локальных калибровочных преобразований. При этом в общей теории относительности обнаруживается со­вершенно новый подход к природе физических взаимодей­ствий, что в существенной степени расширило смысл самого понятия «калибровочное преобразование», возведя его в принцип, который лежит в основе всего фундамента совре­менной физики. Калибровочный принцип называют дина­мическим нововведением в общей теории относительнос­ти. Нововведением является тот факт, что гравитационное поле здесь не постулируется, а выводится как результат инвариантности лагранжиана теории относительно группы локальных калибровочных преобразований. То есть требо­вание инвариантности порождает определенный конкрет­ный вид взаимодействия. А это уже принципиально новый подход в физике. Благодаря ему современная физика ото­шла от исторической традиции, согласно которой заранее давалась форма взаимодействий, установленная эксперимен­тально и теоретически описанная некоторыми умными физиками. Форма взаимодействия более не постулируется,


а выводится как результат инвариантности относительно групп определенных локальных преобразований, как спо­собы, которыми в природе должно компенсироваться ло­кальное калибровочное преобразование. И неважно, какие виды симметрий (калибровочные в прямом смысле или другие) обусловливают эти взаимодействия. В каждом слу­чае теории, в которых работает этот принцип, называют ка­либровочными. Иными словами, калибровочная инвариан­тность позволяет ответить на вопрос: «Почему и зачем в природе существуют такого рода взаимодействия?»

Для обеспечения инвариантности относительно локаль­ных калибровочных преобразований в различных про­странствах (в каждом конкретном случае) производят за­мену обычных производных ковариантными (впервые вве­дены в общей теории относительности) путем добавления таких слагаемых, которые позволяют построить лагранжи­ан, инвариантный одновременно или по отдельности отно­сительно калибровочных преобразований во всех соответ­ствующих внутренних пространствах частиц. Калибровоч­ный принцип оказался важным инструментом теоре­тической физики, это основной принцип, на котором стро­ится единая теория всех взаимодействий в физике. Но представляется, что этот принцип выходит далеко за рамки собственно физики и может стать мощным методологичес­ким регулятивом при решении ряда проблем социально­го и экономического характера. Очевидно, что такие прин­ципы, как социальная справедливость, равенство, устойчи­вый уровень жизни населения и др. и могут быть по­ставлены в соответствии с категорией симметрии. А это го­ворит о том, что путь к достижению этих идеалов может стать в том числе и математическим. Лагранжев форма­лизм, использованный в экономике, мог бы стать мощней­шим фактором в регулировании денежной системы, кон­троле за монопольными отраслями производства и др. Важно и то, что лагранжев подход, ставящий во главу угла обеспечение конкретных видов симметрии, с изменением ситуации позволяет строить лагранжиан путем замены обычных производных ковариантными производными, от­личающимися от первоначальных. Это указывает на мо­бильность и перспективность калибровочного подхода.

8* 227


6.4. Взаимодействия. Классификация элементарных частиц

В настоящее время в физике определено существование четырех типов физических взаимодействий — гравитаци­онного, сильного, электромагнитного и слабого. Оказыва­ется, что все они имеют калибровочную природу и описы­вается калибровочными симметриями, являющимися раз­личными представлениями групп Ли. Так, электромагнит­ное взаимодействие описываются калибровочной симметрий SU(1), слабое взаимодействие — калибровочной симметрией SU(2), сильное взаимодействие — калибровочной симметри­ей SU(3). Тот факт, что все известные физические взаимо­действия имеют одну калибровочную природу, как бы сде­ланы «из одной болванки», вселяет надежду, что можно будет найти «единственный ключ ко всем известным зам­кам» и описать эволюцию Вселенной из состояния, пред­ставленного единым суперсимметричным суперполем, из состояния, в котором различия между типами взаимодей­ствий, между всевозможными частицами вещества и кван­тами полей еще не проявлены. История же самодвижения Вселенной отмечена датами спонтанного нарушения сим­метрии, моментами, когда проявляется различие между ти­пами физических взаимодействий, когда микрообъекты приобретают массы, заряды и другие характеристики, что, в конечном счете, приводит ко всему последующему мно­гообразию физического мира.

Для обсуждения этих проблем остановимся вкратце на существующей в современной физике классификации эле­ментарных частиц. При этом подчеркнем, что обсуждаемые нами выше взаимодействия и связанные с ними поля со­гласно квантовой теории поля — квантованы, то есть со­держат соответствующие каждому конкретному полю кван­ты, посредством которых и осуществляются взаимодей­ствия между частицами.

Физика до недавнего времени изучала материю в двух ее проявлениях — веществе и поле. Причем частицы ве­щества и кванты полей подчиняются разным квантовым статистикам и ведут себя различным образом. Так, части­цы вещества являются ферми-частицами (фермионами). Системы тождественных ферми-частиц подчиняются стати-


стике Ферми—Дирака. Все фермионы имеют полуцелое значение некоторой очень важной квантовой характеристи­ки элементарной частицы (не менее важной, чем заряд или масса), называемой спином. А для частиц с полуцелым зна­чением спина справедлив принцип запрета Паули, соглас­но которому две тождественные частицы с полуцелым спи­ном не могут находиться в одном и том же состоянии. Принцип Паули определяет образование электронных обо­лочек в атомах, поскольку в одном и том же состоянии на одном подуровне могут находиться только два электрона с противоположными спинами, что определяет закономерно­сти периодической системы элементов Менделеева.

Все кванты полей являются бозе-частицами (бозона­ми) — частицами с целочисленным значением спина. Си­стемы тождественных бозе-частиц подчиняются статистике Бозе-Эйнштейна. Принцип Паули для них несправедлив: в одном и том же состоянии может находиться любое число частиц. Так что бозе- и ферми-частицы рассматри­ваются как частицы, имеющие различную природу. В ка­либровочных теориях до недавнего времени это различие снять не удавалось, и физики констатировали факт разде­ления в настоящую эпоху эволюции Вселенной материи на два вида — вещество и поле.




Поделиться с друзьями:


Дата добавления: 2015-05-07; Просмотров: 969; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.