Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Монокристаллический кремний. Технология производства




Модификации метода

Разогрев зоны возможен несколькими путями:

1) разогрев индукционным полем — используется для выращивания монокристаллов проводников и полупроводников (например, кремния).

2) разогрев от оптических источников (так называемая оптическая зонная плавка) — используется для выращивания особо чистых кристаллов диэлектриков, например оксидных кристаллов, гранатов и т. д.

3) разогрев от резистивного нагревателя — используется для выращивания кристаллов легкоплавких диэлектриков.

Существуют модификации метода с той или иной степенью несоосности между перекристаллизованным и неперекристаллизованным стержнями.

Существует, но пока не имеет широкого практического применения модификация метода, с так называемым «парящим расплавом» — в поле индуктора без какого-либо контейнера парит капля расплава, которую подбором соответствующей конфигурации и интенсивности поля и введением затравочного кристалла можно перекристаллизовать. На 2008-й год максимальный вес удерживаемого таким образом в поле расплава составлял 30-40г.

Данная технология относится к области получения монокристаллов полупроводниковых материалов и может быть использована при получении монокристаллов кремния методом Чохральского.

В начале процесса роста монокристалла, часть затравочного монокристалла расплавляется для устранения в нем участков с повышенной плотностью механических напряжений и дефектами. Затем происходит постепенное вытягивание монокристалла из расплава.

Для получения монокристаллов кремния методом Чохральского разработано и широко используется высокопроизводительное автоматизированное оборудование, обеспечивающее воспроизводимое получение бездислокационных монокристаллов диаметром до 200— 300 мм. С увеличением загрузки и диаметра кристаллов стоимость их получения уменьшается. Однако в расплавах большой массы (60—120 кг) характер конвективных потоков усложняется, что создает дополнительные трудности для обеспечения требуемых свойств материала. Кроме того, при больших массах расплава снижение стоимости становится незначительным за счет высокой стоимости кварцевого тигля и уменьшения скорости выращивания кристаллов из-за трудностей отвода скрытой теплоты кристаллизации. В связи с этим с целью дальнейшего повышения производительности процесса и для уменьшения объема расплава, из которого производится выращивание кристаллов, интенсивное развитие получили установки полунепрерывного выращивания. В таких установках производится дополнительная непрерывная или периодическая загрузка кремния в тигель б,ез охлаждения печи, например путем подпитки расплава жидкой фазой из другого тигля, который, в свою очередь, также может периодически или непрерывно подпитываться твердой фазой. Такое усовершенствование метода Чохральского позволяет снизить стоимость выращиваемых кристаллов на десятки процентов. Кроме того, при этом можно проводить выращивание из расплавов небольшого и постоянного объема. Это облегчает регулирование и оптимизацию конвективных потоков в расплаве и устраняет сегрега­ционные неоднородности кристалла, обусловленные изменением объема расплава в процессе его роста.

Для получения монокристаллов п- или р-типа с требуемым удельным сопротивлением проводят соответствующее легирование исходного поликристаллического кремния или расплава. В загру­жаемый поликремний, битые слитки, пластины, скрап вводят соответствующие элементы (Р, В, As, Sb и др.) или их сплавы с кремнием, что повышает точность легирования.

Из установки извлекают кремниевый слиток длиной до 3 метров. Для получения из него кремниевых пластин заданной ориентации и толщиной в несколько десятых миллиметра производят следующие технологические операции.

1. Механическая обработка слитка: - отделение затравочной и хвостовой части слитка; - обдирка боковой поверхности до нужной толщины; - шлифовка одного или нескольких базовых срезов (для облегчения дальнейшей ориентации в технологических установках и для определения кристаллографической ориентации); - резка алмазными пилами слитка на пластины: (100) - точно по плоскости (111) - с разориентацией на несколько градусов. 2. Травление. На абразивном материале SiC или Al2O3 удаляются повреждения высотой более 10 мкм. Затем в смеси плавиковой, азотной и уксусной кислот, приготовленной в пропорции 1:4:3, или раствора щелочей натрия производится травление поверхности Si. 3. Полирование — получение зеркально гладкой поверхности. Используют смесь полирующей суспензии (коллоидный раствор частиц SiO2 размером 10 нм) с водой.

В окончательном виде кремний представляет из себя пластину толщиной 0.5 — 0.65 мм с одной зеркальной поверхностью. Вид пластин с различной ориентацией поверхности и типом проводимости.

Основная часть монокристаллов кремния, получаемых методом Чохральского, используется для производства интегральных микросхем; незначительная часть (около 2 %) идет на изготовление сол­нечных элементов. Метод является оптимальным для изготовления приборов, не требующих высоких значений удельного сопротивления (до 25 Ом·см) из-за загрязнения кислородом и другими примеся­ми из материала тигля.

Бестигельная зонная плавка (БЗП)

Выращивание кристаллов кремния методом бестигельной зонной плавки (БЗП) осуществляют на основе одновиткового индуктора (типа «игольного ушка»), внутренний диаметр которого меньше диа­метра исходного поликристаллического стержня и кристалла. Во всех современных системах зонной плавки используется стационарное положение индуктора, а поликристаллический стержень и рас­тущий монокристалл перемещаются. Скорость выращивания кристаллов методом БЗП вдвое больше, чем по методу Чохральского, благодаря более высоким градиентам температуры. Из-за технических трудностей выращиваемые методом БЗП кристаллы кремния (их диаметр доведен до 150 мм) уступают по диаметру кристаллам, получаемым методом Чохральского. При бестигельной зонной плавке легирование выращиваемого кристалла, как правило, проводят из газовой фазы путем введения в газ-носитель (аргон) газообразных соединений легирующих примесей. При этом удельное сопротивление кристаллов может изменяться в широких пределах, достигая 200 Ом·см. При выращивании в вакууме получают монокристаллы с очень высоким сопротивлением — до 3·104 Ом·см. Для получения такого материала во избежание загрязнений не применяют резку или обдирку стержня поликристаллического кремния. Остаточные доноры, кислород, углерод и тяжелые металлы удаляют из кремниевого стержня пятикратной зонной очисткой в вакууме. К недостаткам метода БЗП относится значительная радиальная неоднородность распределения удельного сопротивления (20—30 %) получаемых кристаллов, которую можно уменьшить использованием трансмутационного легирования.

Монокристаллы кремния, получаемые методом БЗП, составляют около 10 % общего объема производимого монокристаллического кремния и идут в основном на изготовление дискретных приборов, особенно тиристоров большой мощности.

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 2354; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.