Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Генетический дрейф




Случайным генетическим дрейфом, или просто, дрейфом генов называется изменение частот аллелей в ряду поколений, обусловленное случайными причинами. Интенсивность этих изменений зависит в первую очередь от численности популяции, точнее, от числа участвующих в размножении особей.

Чтобы "прочувствовать" механизм дрейфа генов, следует мысленно обратиться к процессу подбрасывания монетки. Сколько раз выпадает "орел" при 100 подбрасываниях монеты?

Большинство даст правильный ответ - приблизительно 50. Но далеко не все понимают, что вероятность выпадения ровно 50-ти "орлов" довольно мала - около 7,9%. Хотя с вероятностью, превышающей 95%, их число будет попадать в интервал от 40 до 60.

Таким образом, доля "орлов" при 100 подбрасываниях, скорее всего, будет заметно отличаться от 1/2, и окажется равной 0,43 или, скажем, 0,56. Теперь представим себе, что монетка подбрасывается 1000 раз. В этом случае вероятность выпадения 430 или 560 "орлов" очень мала. Их доля будет гораздо ближе к 1/2, чем 100 при подбрасываниях.

Суть этого примера заключается в том, что, чем больше выборка, тем ближе соответствие между теоретически ожидаемой (1/2) и реально наблюдаемой частотой. В популяциях мы сталкиваемся с тем же явлением: при небольших численностях теоретически ожидаемая частота (то есть частота аллеля в родительском поколении) может существенно отличаться от реально наблюдаемой (то есть от частоты аллеля у потомства).

Однако между бросанием монеты и дрейфом гена имеется важное различие. При бросании монетки вероятность выпадения "орла" остается равной 1/2 на протяжении всей серии подбрасываний. Для популяций эта вероятность изменяется в каждом поколении: частота аллеля в данном поколении представляет собой вероятность появления этого аллеля в следующем поколении. Если, например, частота аллеля изменилась от 0,5 до 0,6, то вероятность того, что этот аллель появится в следующем поколении равна 0,6. Таким образом, изменения частот аллелей за счет дрейфа накапливаются в поколениях. Ясно, что рано или поздно это приведет к тому, что частота аллеля достигнет значения, равного нулю (аллель исчезнет) или единице (исчезнет альтернативный аллель). В последнем случае говорят о фиксации аллеля. На этом процесс завершается, так как дальнейшие изменения частоты аллеля невозможны.

Случайный дрейф гена легко имитировать с помощью компьютера, (рис. 7.3). На нем показаны три случайные реализации дрейфа гена при различных численностях популяции. Из рисунка видно, что при очень малой численности (25 особей) уже через 40 поколений аллель элиминируется из популяции по случайным причинам. В другой случайной реализации с вероятностью 1/2 можно наблюдать противоположную картину: частота аллеля возрастает до единицы. Если численность популяции довести до 100 особей, то для фиксации аллеля понадобится уже 115 поколений. В популяции большой численности (2500 особей) частота аллеля существенно не изменяется на протяжении 150 поколений. Но это не означает, что в этом случае полиморфизм будет поддерживаться сколь угодно долго. Фиксация аллеля с вероятностью единица происходит в любых конечных популяциях при отсутствии источников новых аллелей (мутации и миграции). Однако для это понадобится число поколений, сравнимое по величине с численностью популяции.

Влияние генетического дрейфа можно наблюдать и в изолированных малочисленных популяциях человека. При обследовании членов закрытой секты баптистов в штате Пенсильвания (США), основанной в XVIII в. выходцами из Германии, обнаружено, что частоты генов групп крови АВО у членов секты отличаются от таковых у американцев немецкого происхождения. Особенно разительны эти различия по частоте гена IB: 2,5% у членов секты и 12% у американцев немецкого происхождения.

В заключение перечислим основные черты генетического дрейфа.

1. Дрейф приводит к случайным колебаниям частот аллелей, которые особенно заметны в малых популяциях.

2. Дрейф неуклонно снижает генетическую изменчивость популяций, увеличивая частоту гомозигот. Окончательным итогом действия генетического дрейфа является элиминация либо фиксация аллеля.

3. Число поколений, необходимых для элиминации (или фиксации) аллеля за счет дрейфа, сопоставимо по величине с численностью популяции.

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 492; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.