Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Межвидовые взаимодействия микроорганизмов




 

Межвидовые коммуникации у бактерий могут служить для синхронизации специализированных функций видов в группе. Разнообразие, присутствующее в каждой данной популяции, может повышать выживаемость для всего сообщества. Более того, продуктивные взаимодействия на основе кворум-сенсинга могут способствовать развитию многовидовых бактериальных организаций, таких, как биоплёнки, а также установлению специфических симбиотических ассоциаций с хозяевами - эукариотами.

 

Межвидовые взаимодействия микроорганизмов наиболее полно изучены на примере микробного сообщества ротовой полости и поверхности зубов человека. В биоплёнках на поверхности зубов выявлено около 500 видов бактерий, которые функционируют как координированное сообщество, имеющее внутри- и межвидовые коммуникации. Стрептококки составляют от 60 до 90% бактерий, которые колонизируют поверхность зубов в течение первых четырёх часов после ее очистки стоматологом. Среди других видов «ранних колонизаторов» обнаруживаются представители Actinomyces, Capnocytophaga, Eikenella, Haemophilus, Prevotella, Propionibacterium и Veillonella.

 

Способы коммуникаций среди генетически идентичных клеток, по всей вероятности, отличаются от сигналов при межвидовых коммуникациях. Нет доказательств наличия среди сигнальных молекул бактерий ротовой полости типичных представителей семейства ацилгомосеринлактонов, которые регулируют внутривидовую генную экспрессию у грамотрицательных бактерий.

 

Главной сигнальной молекулой при межвидовых коммуникациях является AI-2. Подтверждением этому является факт обнаружения гена luxS, кодирующего фермент, необходимый для синтеза молекулы AI-2, у нескольких родов бактерий ротовой полости.

 

AI-2 впервые был обнаружен у морской светящейся бактерии Vibrio harveyi, для которой он является сигнальной молекулой, регулирующей процесс биолюминесценции. Позже наличие AI-2 было показано более чем у 30 видов бактерий, включающих грамположительные и грамотрицательные микроорганизмы.

 

Иногда для одной группы бактерий может быть полезным негативно влиять на цикл реакций кворум-сенсинга конкурирующей группы бактерий. Исследования в этой области выявляют несколько примеров стратегий антикворум-сенсинга, которые используют сосуществующие популяции бактерий. Так, Staphylococcus epidermidis использует пептид для контроля уровня своей agr вирулентности, а также для подавления вирулентности у Staphylococcus aureus.

 

Штамм Bacillus sp. 240B1 демонстрирует способность к энзиматической инактивации ацилгомосеринлактонов - сигнальных молекул грамотрицательных бактерий. Было показано, что в присутствии АИА, гомосеринлактоназы, состоящей из 250 аминокислот, разрушаются молекулы гомосеринлактонов, продуцируемых патогеном у растений Erwinia сагоtovora. Гены, гомологичные гену аiiА, обнаружены и у 16 подвидов Bacillus thuringiensis, следовательно, данные микроорганизмы также способны осуществлять деградацию гомосеринлактонов.

 

Почвенная бактерия Variovorax paradoxus может использовать ацилгомосеринлактоны в качестве единственного источника углерода и азота. Этот факт указывает на то, что в своих природных местах обитания V.paradoxus может расти на ацилгомосеринлактонах, извлекая выгоду из конкурентного обострения в окружающей среде. В данном случае фермент, разрушающий ацилгомосеринлактоны, отличен от AiiA-лактоназы: это - аминоацилаза, отщепляющая лактонное кольцо от ацильной группы.

 

По причине того, что у многих патогенов животных и растений системы кворум-сенсинга контролируют вирулентность, эти системы можно рассматривать как потенциальные мишени для действия антимикробных агентов. Во-первых, одна из стратегий состоит в ингибировании синтеза молекул - предшественников ацилгомосеринлактонов или самих ацилгомосеринлактонов. Во-вторых, мишенью лекарственных препаратов могут служить системы, контролирующие выброс и диффузию ацилгомосеринлактонов. В-третьих, ацилгомосеринлактон-подобные антагонисты могут конкурировать с ацилгомосеринлактонами за связывание с гомологами LuxR. В-четвертых, возможно применение ферментов, расщепляющих ацилгомосеринлактоны, а также антител к этим молекулам. И, наконец, как было показано недавно, гены аiiА, кодирующие лактоназы, осуществляющие деградацию ацилгомосеринлактонов, могут быть внедрены в геном растений, экспрессируясь в котором, они могли бы обеспечивать защиту растению-хозяину от патогенных микроорганизмов. Так, трансгенные растения табака с включенным аiiА-геном успешно противостояли заражению E.carotovora.

 

Бактериальные цитокины

 

Обнаружено, что прокариотические микроорганизмы синтезируют вещества, похожие на гормоны позвоночных (включая стероиды и полипептидные гормоны, такие, как инсулин). Увеличивается количество данных, подчеркивающих важность химически опосредованных межклеточных взаимодействий в бактериальных культурах для таких событий, как споруляция, конъюгация, вирулентность и биолюминесценция. Таким образом, в настоящее время многие исследования в области микробиологии посвящены взаимодействиям между микроорганизмами, основанными на использовании бактериальных цитокинов.

 

Известно, что микроорганизмы способны гибко адаптироваться к изменяющимся условиям окружающей среды (в частности, к недостатку питательных компонентов). При этом некоторые из них обладают генетически закреплённой специфической организацией метаболизма, позволяющей существовать при очень низких концентрациях питательных веществ (олиготрофы). Клетки другой категории (копиотрофы) при истощении среды обитания способны включать специальные программы переживания неблагоприятных условий. Часть из них образуют специализированные структуры (споры и цисты), которые чрезвычайно устойчивы к различным стрессам, неспорулирующие же бактерии способны переживать неблагоприятные условия, оставаясь вегетативными клетками с пониженной метаболической активностью, т.е. переходя в особое VBNC (viable but nonculturable - жизнеспособные, но некультивируемые) состояние. Естественно, что некультивируемые бактерии остаются за рамками общепринятых методов исследований (высевы на плотные или жидкие среды не позволяют их обнаруживать). Например, возбудители таких опасных заболеваний, как холера и кампилобактериоз, склонны образовывать некультивируемые формы. При микроскопическом исследовании образцов, выделенных из окружающей среды (почва, речные и морские воды и т.д.) обнаружено множество клеток, которые, обладая метаболической активностью, не могут образовывать полноценную культуру (т.е. некультивируемые). В настоящее время известно всего несколько примеров превращения таких бактерий в нормальные культивируемые клетки. Концепция цитокин-зависимого роста микроорганизмов позволяет по-новому рассматривать проблему подбора сред для восстановления некультивируемых форм.

 

Некультивируемые формы патогенных бактерий обнаружены не только в окружающей среде, но и в тканях, органах человека и животных. Чаще всего они сильно отличаются морфологически и биохимически. Например, возбудитель туберкулёза в тканях образует нетипичные кокковидные формы. Возможно, такие клетки являются особыми переживающими формами, способными к активации и размножению. Существование таких покоящихся форм может объяснить периодически возникающие рецидивы болезни у, казалось бы, вылеченных больных. Показано, что клетки Mycobacterium tuberculosis могут переходить в нереплицируемое кокковидное состояние в микроаэрофильных условиях in vitro, которые часто возникают in vivo (например, в гранулемах). Кокковидные формы также обнаружены для Campylobacter jejuni и Helicobacter pylori. Предполагается, что они образуются в тканях в ответ на воздействие лекарств и, возможно, являются покоящимися клетками, устойчивыми к действию антибиотиков. Однако данные о культивировании таких форм весьма противоречивы. Возможно, такие бактерии могут быть активированы какими-то специфическими ростовыми факторами, роль которых, вероятно, исполняют цитокины хозяина. Например, рост туберкулёзных бацилл внутри моноцитов существенно стимулировался трансформирующим ростовым фактором (TGF-1), тогда как рост клеток М.tuberculosis и M.avium внутри макрофагов значительно ускорялся в присутствии эпидермадьного ростового фактора. Очевидно, цитокинные факторы хозяина могут играть важную роль и в активации покоящихся бактерий, и в размножении активных возбудителей. Снижение уровня инсулина в крови больных сахарным диабетом приводит к значительному размножению клеток Pseudomonas pseudomallei, являющихся возбудителями мелиоидоза, а трансферрин имеет большое значение для роста и переживания внутри мышиных макрофагов клеток Francisella tularensis.

 

Возможно, что специфические бактериальные цитокины также играют существенную роль в образовании покоящихся форм и их восстановлении в активные делящиеся клетки. Тогда, принимая во внимание проблемы возникновения устойчивости к антибиотикам, сложно переоценить важность отыскания автокринных ростовых факторов, необходимых для роста патогенных бактерий, и, следовательно, являющихся мишенью для воздействия принципиально новых антибиотиков, нетоксичных для больного.

 

Применение специфических бактериальных цитокинов также может существенно улучшить ситуацию с выращиванием некультивируемых бактерий в средах, не вполне подходящих для их размножения. Например, обычно не растущие на минимальной сукцинатной среде микрококки начинают нормально в ней размножаться в присутствии автокринного фактора Rpf (resuscitation-promoting factor), а отмытые клетки Mycobacterium smegmatis, которые растут на минимальной среде только при добавлении Rpf, выделенного из Micrococcus luteus, можно рассматривать в качестве модели популяции «голодающих» бактерий в почве, вероятно, требующей для начала деления присутствия специфического цитокина. Применение специфических бактериальных цитокинов также может существенно улучшить ситуацию с выращиванием некультивируемых бактерий в средах, не вполне подходящих для их размножения. Гены, имеющие сходство с геном, кодирующим белок Rpf у М.luteus, широко распространены среди грамположительных бактерий с высоким содержанием G+C, к которым относятся стрептомицеты, коринебактерии и микобактерии. Этот факт открывает новые возможности для предупреждения и лечения болезней, вызванных микробными агентами, а также позволяет по-иному взглянуть на сложный комплекс межвидовых бактериальных взаимодействий в природных местах обитания микроорганизмов.

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 659; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.