Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сущность принципов системного подхода и системного анализа




ТЕСТ

Сущность принципов системного подхода и системного анализа

4.2 Закон «необходимого разнообразия»

4.3 Принцип «черного ящика»

Принципы системного подхода – это некоторые положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. `

Основные принципы системного подхода:

Принцип целостного подхода к объекту. Разделение системы на элементы должно быть «целостным», таким, чтобы элементы несли на себе определенные свойства целого объекта. Например, шариковая ручка, как система состоит из двух частей корпуса, колпачка и стержня. Каждый из элементов имеет определенные свойства, которые и формируют общие свойства ручки. Но не являются элементом ручки молекулы пишущего вещества (чернил, пасты) или атомы пишущего металлического шарика. Это элементы более мелких систем – пасты и, собственно, шарика.

 

• Принцип иерархичности. Каждая подсистема объекта рассматривается, в свою очередь, как система, а сам системный объект – как часть суперсистемы. Например, крупная коммерческая компания как система состоит из подсистем – входящих в нее предприятий-филиалов. В свою очередь, каждое предприятие может быть расчленено на подсистемы – отделы, отделы – на участки и т.д. С другой стороны, сама компания представляет собой подсистему системы более высокого уровня – отрасли.

 

• Принцип множественности описания системы. Для получения адекватного знания о системе требуется построение некоторого класса взаимосвязанных ее описаний, каждое из которых способно охватить лишь определенные аспекты системы. В общем случае для любой системы требуется три разных способа ее описания:

1) макроописание - с точки зрения целостных, присущих ей внешних свойств;

2) микроописание - с точки зрения ее внутреннего строения и участия ее элементов в формирование целостных свойств системы;

3) иерархическое описание - с точки зрения понимания данной системы как подсистемы более высокого уровня.

 

• Принцип открытости системы. Система не изолирована от окружающей среды. Исследование системы неотделимо от исследования условий ее существования.

 

• Принцип непрерывного саморазвития системы. Источник развития системы лежит обычно в самой системе. В объектах, образующих целое, появляются противоречия, которые делают невозможным сохранение объекта в неизменном состоянии. Для преодоления возникающих противоречий в системе появляются изменения.

Принцип конечной цели. Это подход к конечной (глобальной) цели как приоритетной, абсолютной. Принцип имеет несколько правил:

• для проведения системного анализа необходимо в первую очередь сформулировать цель исследования. Расплывчатые, не полностью определенные цели влекут за собой неверные выводы;

• анализ следует вести на базе первоочередного уяснения основной цели (функции, основного назначения) исследуемой системы, что позволит определить ее основные существенные свойства, показатели качества и критерии оценки;

• при синтезе систем любая попытка изменения или совершенствования должна оцениваться относительно того, помогает или мешает она достижению конечной цели;

• цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью.

 

Принцип измерения. О качестве функционирования какой-либо системы можно судить только применительно к системе более высокого порядка. Другими словами, для определения эффективности функционирования системы надо представить ее как часть более общей и проводить оценку внешних свойств исследуемой системы относительно целей и задач суперсистемы.

 

Принцип эквифинальности. Система может достигнуть требуемого конечного состояния, не зависящего от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями. Это форма устойчивости по отношению к начальным и граничным условиям.

 

Принцип единства. Это совместное рассмотрение системы как целого и как совокупности частей (элементов). Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целостных представлений о системе.

Принцип связности. Рассмотрение любой части совместно с ее окружением подразумевает проведение процедуры выявления связей между элементами системы и выявление связей с внешней средой (учет внешней среды). В соответствии с этим принципом систему в первую очередь следует рассматривать как часть (элемент, подсистему) другой системы, называемой суперсистемой или старшей системой.

 

Принцип модульного построения. Полезно выделение модулей в системе и рассмотрение ее как совокупности модулей. Принцип указывает на возможность вместо части системы исследовать совокупность ее входных и выходных воздействий (абстрагирование от излишней детализации).

 

Принцип функциональности. Это совместное рассмотрение структуры и функции с приоритетом функции над структурой. Принцип утверждает, что любая система тесно связана с функцией системы и ее частей. В случае придания системе новых функций полезно пересматривать ее структуру, а не пытаться втиснуть новую функцию в старую схему. Поскольку выполняемые функции составляют процессы, то целесообразно рассматривать отдельно процессы, функции, структуры. В свою очередь, процессы сводятся к анализу потоков различных видов:

· материальный поток;

· поток энергии;

· поток информации;

· смена состояний.

С этой точки зрения структура есть множество ограничений на потоки в пространстве и во времени.

 

Принцип адаптации. Это учет изменяемости системы, ее способности к развитию, адаптации, расширению, замене частей, накапливанию информации. В основу синтезируемой системы требуется закладывать возможность развития, наращивания, усовершенствования. Обычно расширение функций предусматривается за счет обеспечения возможности включения новых модулей, совместимых с уже имеющимися. С другой стороны, при анализе принцип развития ориентирует на необходимость учета предыстории развития системы и тенденций, имеющихся в настоящее время, для вскрытия закономерностей ее функционирования.

Одним из способов учета этого принципа является рассмотрение системы относительно ее жизненного цикла. Условными фазами жизненного цикла исследуемой системы являются проектирование, изготовление, ввод в эксплуатацию, эксплуатация, наращивание возможностей (модернизация), вывод из эксплуатации (замена), уничтожение.

 

Принцип историчности или открытости. Для того, чтобы система функционировала во времени и пространстве, она должна изменяться и, обязательное условие, она должна взаимодействовать с внешней средой.

 

Принцип децентрализации. Это сочетание в сложных системах централизованного и децентрализованного управления, которое, как правило, заключается в том, что степень централизации должна быть минимальной, обеспечивающей выполнение поставленной цели. Недостаток децентрализованного управления – увеличение времени адаптации системы. Он существенно влияет на функционирование системы в быстро меняющихся средах. То, что в централизованных системах можно сделать за короткое время, в децентрализованной системе будет осуществляться весьма медленно. Например, общее время для синхронизации принятого решения в системе N с централизованным управлением соствляет 1 такт, а для (системы с децентрализованным управлением) взаимодействующих только с непосредственными соседями составляет ~ 3N такта.

Недостатком централизованного управления является сложность управления из-за огромного потока информации, подлежащей переработке в старшей системе управления. Поэтому в сложной системе обычно присутствуют два уровня управления. В медленно меняющейся обстановке децентрализованная часть системы успешно справляется с адаптацией поведения системы к среде и с достижением глобальной цели системы за счет оперативного управления, а при резких изменениях среды осуществляется централизованное управление по переводу системы в новое состояние.

 

Принцип неопределенности. Это учет неопределенностей и случайностей в системе. Принцип утверждает, что можно иметь дело с системой, в которой структура, функционирование или внешние воздействия не полностью определены.

Сложные открытые системы не подчиняются вероятностным законам. В таких системах можно оценивать «наихудшие» ситуации и рассмотрение проводить для них. Этот способ обычно нвзывают методом гарантируемого результата. Он применим, когда неопределенность не описывается аппаратом теории вероятностей.

При наличии информации о вероятностных характеристиках случайностей (математическое ожидание, дисперсия и т.д.) можно определять вероятностные характеристики выходов в системе.

 

Перечисленные принципы обладают высокой степенью общности. Для непосредственного применения исследователь должен наполнить их конкретным содержанием применительно к предмету исследования. Такая интерпретация может привести к обоснованному выводу о незначительности какого-либо принципа. Однако знание и учет принципов позволяют лучше увидеть существенные стороны решаемой проблемы, учесть весь комплекс взаимосвязей, обеспечить системную интеграцию.

 

4.2 Закон «необходимого разнообразия»

Закон необходимого разнообразия (закон Эшби). Один из основателей кибернетики, Уильям Росс Эшби сформулировал закономерность управления для больших, сложных технических или организационных систем: «Разнообразие управляющей системы должно быть не меньше разнообразия управляемого объекта». Этот принцип позже назвали «Законом необходимого разнообразия» или «Законом Эшби».

Уильям Росс Эшби 1903-1972
Разберем этот закон на простом примере, где лицо, принимающее сложное (неочевидное) решение – N, проблема, требующая решение – D. В этом случае разнообразие вариантов возможных решений можно оценить энтропией ЭD. Но лицо, принимающее решение вряд ли обладает информацией обо всех приемах и методах решения. Кроме того, он может быть скован возможностями, ресурсами, способностями. Поэтому «разнообразие» вариантов решения N может быть оценено как ЭN, и значение этого показателя энтропии будет меньше ЭD. Для успешного решения проблемы N должен стремиться к уменьшению разности разнообразия, т.е. ΔЭ = ЭD - ЭN стремится к минимуму. Это возможно если управляющая система N будет иметь большее, или равное разнообразие (свободу выбора), чем объект управления – проблема D:

 

4.3 Принцип «черного ящика»

Одним из основных принципов управления сложными системами является понятие «Черный ящик». Под «черным ящиком» имеется в виду система, внутреннее устройство которой неизвестно, но известно, как она реагирует на внешние воздействия. Термин заимствован из авиационной техники, где он появился в 1940-е гг. и обозначал различные элементы оборудования самолета.

Иносказательно так можно сказать о некоем техническом устройстве, которое хотя и выдает ожидаемый результат, но при этом пользователю совершенно непонятно, как этот результат достигается, как, собственно, работает этот аппарат. Этот термин образно показывает отсутствие информации о внутреннем устройстве системы. Иногда это выражение иронически применяется и к некоторым бюрократическим структурам с запутанным обращением бумаг и непонятным механизмом принятия решений (работа «по принципу черного ящика»). В контексте нашей темы, понятие «черный ящик» используется как характеристика непознаваемости сложных процессов происходящих внутри системы.

Для наглядности представления сути «черного ящика», представим его в виде модели. В соответствии с определением, изобразим «черный ящик» как параллелепипед (коробку, ящик) с непрозрачными стенками. Такая модель будет отражать свойства системы: 1) целостность и 2) обособленность от среды, при этом внутреннее устройство для нас останется закрытым. Система «черный ящик» связана со средой – «реагирует на внешние воздействия». Изобразим стрелками эти связи. Внешние воздействия – стрелки направленные от среды в систему (ВХОД), ответные действия системы – стрелки направленные от системы в среду (ВЫХОД). Количество входов и выходов определяется неограниченным количеством способов взаимодействия реальной системы с внешней средой, т.е. их количество тоже может быть неограниченным.

 

ВНЕШНЯЯ СРЕДА   ВХОД ВЫХОД     ВНЕШНЯЯ СРЕДА

 


Рисунок 4.3.1 Модель «черного ящика»

В виде «черного ящика» мы можем принять систему в виде наручных часов, системного блока персонального компьютера, датчика потребления электроэнергии, плеера и еще многих и многих объектов, которыми пользуемся не вникая как они устроены. Результат, который мы получаем в виде показаний времени на текущий момент, работы компьютерных программ, данных потребленной электроэнергии, воспроизведения музыки – есть результат целевой функции системы.

Глава 5 Системный анализ в управлении и экономике сферы сервиса




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 1011; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.