Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференциальное исчисление функции нескольких переменных




Частное и полное приращение функции.

 

Определение 9. Полное приращение функции в точке – это функция .

Пусть , .

Обозначим , ,…, .

Тогда

 

Определение 10. Пусть задана функция . Зафиксируем значения переменной, а одной переменной дадим приращение . Тогда функция получит частное приращение:

.

Замечание Полное приращение не равно сумме частных приращений: .

 

 

Определение 1. Пусть у функции переменная зафиксирована, а переменная получает приращение . Тогда приращение функции будет .

Если существует предел , то его называют частной производной от функции в точке по переменной и обозначают: или , или .

Аналогично определяется частная производная по переменной

При нахождении частной производной применимы все формулы и правила дифференцирования функции одной переменной, так как по определению мы фиксируем все переменные, кроме одной, и фактически имеем дело с функцией одной переменой. Если, например, находим производную по , то все остальные аргументы рассматриваем как константы.

 

Пример 5. Найти частные производные функции .

Решение. При нахождении считаем, что – константа, а – переменная величина, поэтому . Аналогично, .

Пример 6. Найти частные производные функции

.

Решение. Находим , считая, что – функция одного аргумента – , а и – константы: .

 

Замечание. Для функции многих переменных из существования конечных частных производных в точке не следует непрерывность функции в этой точке.

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 771; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.