Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гормоны коркового вещества надпочечников и их роль в адаптации организма к неблагоприятным условиям окружающей среды




Надпочечники — парные эндокринные железы позвоночных животных и человека.

Гормоны, продуцируемые в корковом веществе, относятся к кортикостероидам. Сама кора надпочечников морфо-функционально состоит из трёх слоёв:

Клубочковая зона

Пучковая зона

Сетчатая зона

Корковое вещество надпочечников имеет парасимпатическую иннервацию. Тела первых нейронов находятся в заднем ядре блуждающего нерва. Преганглионарные волокна локализуются в блуждающем нерве, в переднем и заднем стволе блуждающего нерва, печеночных ветвях, чревных ветвях. Они следуют в парасимпатические узлы и во внутренностное сплетение. Постганглионарные волокна: печеночное, селезеночное, поджелудочное железы, подсерозное, подслизистое и подмышечное сплетения желудка, тонкой и толстой кишок и других внутренностных органов трубчатого строения.

Клубочковая зона

В клубочковой зоне образуются гормоны, называемые минералкортикоидами. К ним относятся: Альдостерон Кортикостерон Дезоксикортикостерон Минералкортикоиды повышают реабсорбцию Na+ и выделение K+ в почках.

Пучковая зона В пучковой зоне образуются глюкокортикоиды, к которым относятся: Кортизол Кортикостерон Глюкокортикоиды оказывают важное действие почти на все процессы обмена веществ. Они стимулируют образование глюкозы из жиров и аминокислот (глюконеогенез), угнетают воспалительные, иммунные и аллергические реакции, уменьшают разрастание соединительной ткани, а также повышают чувствительность органов чувств и возбудимость нервной системы.

Сетчатая зона

В сетчатой зоне производятся половые гормоны (андрогены, являющиеся веществами — предшественниками эстрогенов). Данные половые гормоны играют роль несколько иную, чем гормоны, выделяемые половыми железами. Они активны до полового созревания и после созревания половых желёз; в том числе они влияют на развитие вторичных половых признаков.

Недостаток этих половых гормонов вызывает выпадение волос; избыток ведёт к вирилизации — появлению у женщин черт, характерных для противоположного пола

31. Гормоны мозгового вещества надпочечниковО способности экстрактов из надпочечников повышать кровяное давление было известно еще в XIX в., однако только в 1901 г. Дж. Такамине и сотр. выделили из мозгового слоя надпочечников активное начало, идентифицированное с адреналином. Это был первый гормон, полученный в чистом кристаллическом виде. Спустя более 40 лет, в 1946 г., из мозгового вещества был выделен еще один гормон – норадреналин, который до этого был синтезирован химическим путем. Помимо этих двух главных гормонв, в надпочечниках в следовых количествах синтезируется еще один гормон – изопропиладреналин. Все указанные гормоны имеют сходное строение. Эти гормоны по строению напоминают аминокислоту тирозин, от которого они отличаются наличием дополнительных ОН-групп в кольце и у β-углеродного атома боковой цепи и отсутствием карбоксильной группы.

Известно, что и адреналин, и норадреналин быстро разрушаются в организме; с мочой выделяются неактивные продукты их обмена, главным образом в виде 3-метокси-4-оксиминдальной кислоты, оксоадренохрома, метоксинорадреналина и метоксиадреналина. Эти метаболиты содержатся в моче преимущественно в связанной с глюкуроновой кислотой форме. Ферменты, катализирующие указанные превращения катехоламинов, выделены из многих тканей и достаточно хорошо изучены, в частности моно-аминоксидаза (МАО), определяющая скорость биосинтеза и распада кате-холаминов, и катехолметилтрансфераза, катализирующая главный путь превращения адреналина, т.е. о-метилирование за счет S-аденозилметионина.

32. Физиологическое значение гормонов гипофизаПитуитарная железа, называемая также гипофизом, — это мелкая железа около 1 см в диаметре и массой от 0,5 до 1 г, которая лежит в турецком седле (костном образовании основания черепа) и связана с гипоталамусом посредством питуитарного, или гипофизарного, стебля. Физиологически питуитарная железа подразделяется на две независимые части: переднюю долю гипофиза, или аденогипофиз, и заднюю долю гипофиза, или нейрогипофиз. Между ними есть промежуточная доля, относительно плохо васкуляризированная, практически не выраженная у человека и более заметная как структурно, так и функционально у низкоорганизованных организмов. В эмбриогенезе эти две доли гипофиза развиваются из разных источников: передняя доля — из кармана Ратке, который эмбриологически является инвагинацией фарингеального эпителия, а задняя доля — из нервной ткани, являющейся выростом гипоталамуса Передняя доля гипофиза содержит много различных типов клеток, синтезирующих и высвобождающих гормоны. Для синтеза определенного типа гормонов в аденогипофизе существует определенный тип клеток. С помощью специальных красителей, реагирующих с комплексом антиген-антитело, где антигеном является определенный гормон, смогли выделить пять разных типов клеток. 1. Соматотропы — гормон роста человека. 2. Кортикотропы — адренокортикотропин. 3. Тиреотропы — тиреотропный гормон. 4. Гонадотропы — гонадотропные гормоны, включая лютеинизирующий гормон, фолликулостимулирующий гормон. 5. Лактотропы — пролактин. Около 30-40% клеток переднего гипофиза представлены соматотропами, вырабатывающими гормон роста, 20% — кортикотропами, секретирующими АКТГ. Каждый из остальных типов клеток составляет не более 3-5% общего количества, но они секретируют чрезвычайно мощные гормоны, контролирующие функции щитовидной железы, половые функции и секрецию молока.

33. Понятие о нервно-мышечном аппарате и двигательной единицеНервно-мышечный аппарат — это совокупность двигательных единиц. Каждая ДЕ включает мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ остается неизменным у человека (Физиология человека, 1998). Количество МВ в мышце возможно и поддается изменению в ходе тренировки, однако, не более чем на 5 % (Хоппелер, 1987). Поэтому этот фактор роста функциональных возможностей мышцы не имеет практического значения. Внутри МВ происходит гиперплазия (рост количества элементов) многих органелл: миофибрилл, митохондрий, саркоплазматического ретикулума (СПР), глобул гликогена, миоглобина, рибосом, ДНК и др. Изменяется также количество капилляров, обслуживающих МВ.По своему строению и функциональным особенностям двигательные единицы неодинаковы. Они отличаются размерами тела мотонейрона, толщиной аксона и числом мышечных волокон, входящих в состав двигательной единицы.
Так, малая двигательная единица, включает относительно маленький мотонейрон с тонким аксоном, который имеет небольшое число концевых веточек и соответственно иннервирует небольшое число мышечных волокон (самая малая - до нескольких десятков).Малые двигательные единицы входят в состав всех мелких мышц лицевой мускулатуры, пальцев рук и ног, кистей и частично в состав больших мышц туловища и конечностей. Большая двигательная единица включает крупный мотонейрон с относительно толстым аксоном, который образует большое число концевых веточек в мышце и соответственно иннервирует большое число (до нескольких тысяч) мышечных волокон. Таким образом, чем крупнее тело мотонейрона, тем толще его аксон и тем больше мышечных волокон иннервируется этим мотонейроном. Большие двигательные единицы входят преимущественно в состав больших мышц туловища и конечностей.

34. Проведение возбуждения через нервно- мышечные синапсыПереход (передача) возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную, секреторную) осуществляется через специализированное образование, которое получило название синапс. Синапс (греч. synapsis - соединение, связь) - специализированная зона контакта между нейронами или нейронами и другими возбудимыми образованиями, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения.

Синапсы могут быть между двумя нейронами (межнейронные), между нейроном и мышечным волокном (нервно-мышечные), между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные), между отростками нейрона и другими клетками (железистыми).

В зависимости от локализации, функции, способа передачи возбуждения и природы медиатора, синапсы делятся на центральные и периферические, возбуждающие и тормозные, химические, электрические, смешанные, холинергические или адренергические.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс химический - в нем возбуждение от пре- к постсинаптической мембране передается с помощью медиатора. Передача возбуждения через синапс химический отличается большей специализированностью, чем через синапс электрический.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной - 1. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше; 2. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

Синапс межнейронный - синапс между двумя нейронами. Различают аксо-аксональные, аксо-соматические, аксо-дендрические и дендро-дендрические синапсы.

Синапс нервно-мышечный - синапс между аксоном мотонейрона и мышечным волокном.

35. Теория мышечного сокращения Сокращение — это изменение механического состояния миофибриллярного аппарата мышечных волокон под влиянием нервных импульсов.

сокращение и расслабление мышцы представляет собой серию процессов, развертывающихся в следующей последовательности: стимул — > возникновение потенциала действия — >электромеханическое сопряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и воздействие его на систему тропонин — тропомиозин — актин) — > образование поперечных мостиков и «скольжение» актиновых нитей вдоль миозиновых — > сокращение миофибрилл — > снижение концентрации ионов Са++ вследствие работы кальциевого насоса — > пространственное изменение белков сократительной системы — > расслабление миофибрилл

36. Энергетика мышечного сокращенияСокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. В качестве основного поставщика энергии выступает АТФ (аденозинтрифосфорная кислота).

АТФ в организме играет роль "универсальной валюты", идущей на оплату всех энергетических потребностей живых клеток. Так как запасы АТФ в мышцах невелики и, чтобы поддерживать их деятельность, необходим непрерывный ресинтез АТФ. Его восполнение и образование энергии в принципе происходит двумя способами - в зависимости от того присутствует при этом кислород или нет.

Реакции, совершающиеся в бескислородной среде получили название анаэробных. Освобождение энергии в этом случае происходит за счет мгновенного расщепления богатых энергией веществ на менее богатые. Последнее звено в этом расщеплении - когда гликоген превращается в молочную кислоту.

Гликоген - сложный вид сахара, родственный крахмалу. Сахар и другие виды углеводов, которые мы потребляем, накапливается в организме в виде гликогена. Следовательно, для простоты можно записать:

Реакции, происходящие с участием кислорода, получили название аэробных. Образование энергии и восстановление запасов АТФ в этом случае происходит за счет окисления углеводов и жиров. При этом образуются углекислый газ и вода. Часть энергии расходуется на восстановление молочной кислоты в глюкозу и гликоген. При этом обеспечивается ресинтез АТФ.

Аэробный ресинтез АТФ отличается высокой экономичностью, а также универсальностью в использовании субстратов: окисляются все органические вещества организма (аминокислоты, белки, углеводы, жирные кислоты и др.). Однако он требует потребления кислорода, доставка которого в мышечную ткань обеспечивается дыхательной и сердечно-сосудистой системами, что естественно связано с их напряжением. Кроме того развертывание аэробного образования АТФ продолжительно по времени и невелико по мощности

37. Аэробный и анаэробный пути окисления углеводовАэробное окисление углеродов - I этап — распад глюкозы или гликогена до пировиноградной кислоты; II этап — превращение пировиноградной кислоты в аце-тил-КоА; III этап — окисление ацетил-КоА в цикле Кребса. Реакции I этапа аналогичны процессу анаэробного распада углеводов, но имеют две особенности: 1) этап заканчивается образованием Двух молекул пировиноградной кислоты; 2) при этом образуются 6—7 молекул АТФ вместо 2—3 молекул при анаэробных условиях.
На II этапе пировиноградная кислота подвергается окислительному декарбоксилированию с образованием двух молекул ацетил-КоА с накоплением молекул АТФ.
III этап характеризуется полным окислением двух молекул ацетилкофермента А в цикле Кребса до углекислого газа и воды, пр этом накапливается 24 молекулы АТФ.
В итоге непрямое аэробное окисление одной молекулы глюкозы обеспечивает выход 36 молекул АТФ, а если процесс начинается с распада гликогена, то 37 молекул. Остальная часть образовавшейся энергии рассеивается в виде тепла. Такой путь преобладает в печени, почках.

Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 1668; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.