Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Построение геометрической картины зацепления эвольвентных зубьев




Рассмотрим внешнее эвольвентное зацепление (рис.3.3).

Эвольвента окружности получается, если по неподвижному кругу данного радиуса перекатывать прямую без скольжения. Любая точка этой прямой прочертит эвольвенту в плоскости круга. Окружность, по которой перекатывается прямая, называется основной окружностью, а прямая – производящей прямой.

Пара зубчатых колес, находящихся в зацеплении, всегда имеет соприкасающиеся окружности, которые при вращении этих колес перекатываются друг по другу без скольжения. Эти окружности касаются в полюсе зацепления П и называются начальными (r, мм).

Окружность изготовленного зубчатого колеса, по которой производится деление цилиндрической заготовки на z равных частей, называется делительной окружностью, где z- число зубьев зубчатого колеса. Зубчатые колеса, нарезаемые без смещения режущего инструмента, называются нулевыми. У нулевых зубчатых колес начальный r (мм) и делительный r окружности совпадают. Окружность, ограничивающая вершины готовых зубьев, называется окружностью выступов (rа , мм).

Рис.3.3.

 

Окружность, ограничивающая глубину впадин со стороны тела колеса, называется окружностью впадины (rf). Расстояние между двумя одноименными точками двух соединенных зубьев, измеренное по делительной окружности, называется шагом зацепления Pt (мм).

Отношение Pt/p называется модулем зацепления и обозначается m:

мм

Модуль зацепления является основным геометрическим параметром зубчатого зацепления. По известному модулю и числу зубьев можно определить все остальные геометрические параметры зубчатого колеса.

Коэффициентом торцевого перекрытия называется отношение длины k (мм) дуги зацепления к длине шага Pt (мм) по начальным окружностям колес:

.

Длина дуги зацепления k (мм) определяется по формуле:

(мм),

где AB – длина активной части линии зацепления. Тогда коэффициент торцевого перекрытия:

Коэффициент перекрытия характеризует собой плавность работы зацепления и показывает число пар зубьев одновременно находящихся в зацеплении.

Коэффициент перекрытия может быть определен аналитически по формуле:

,

где ra1, ra2 – радиусы окружностей выступов соответственно шестерни и колеса;

rO1, rO2 – радиусы основных окружностей соответственно шестерни и колеса;

– межосевое расстояние;

Pt – шаг зубьев;

a – профильный угол инструментальной рейки.

 

Дано:

число зубьев шестерни z4=24;

число зубьев колеса z5=23;

модуль зацепления m=25.

Радиусы (r, мм) делительных (начальных) окружностей:

(мм);

(мм);

(мм).

 

Радиусы основных окружностей (rO, мм):

(мм), a=20°;

(мм);

(мм).

Радиусы (ri, мм) окружностей впадин:

(мм);

(мм);

(мм).

Радиусы окружностей выступов (ra, мм):

(мм);

(мм);

(мм).

Шаг зубьев (P, мм) по делительной окружности:

(мм);

Pt=3,14.25=78,5 (мм).

Высота головки зуба (ha, мм):

(мм).

Высота ножки зуба (hf, мм):

(мм);

h f =25.1,25=31,25 (мм).

Высота зуба (h, мм):

h=ha+h f (мм);

h=25+31,25=56,25 (мм).

Толщина зуба по делительной окружности (St, мм):

(мм);

(мм).

Межосевое расстояние (, мм):

(мм);

(мм).

 

 

Коэффициент перекрытия:

;

 

 

3.2. Построение геометрической картины зацепления эвольвентных зубьев.

Выбираем масштабный коэффициент длины, исходя из условия, чтобы высота зуба на чертеже была не менее 50 мм

,

где m – модуль зацепления, мм;

z4 – число зубьев колеса 4;

О4П – отрезок на чертеже (мм), изображающий радиус делительной окружности.

 

Вычерчиваем профили зубьев в следующей последовательности:

а) На линии центров полюсов от точки П (полюса зацепления) откладываем радиусы начальных окружностей r4 и r5 и проводим эти окружности.

б) Строим основные окружности радиусами rо4 и rо5. Проводим прямую N1N2 являющуюся теоретической линией зацепления. Для этого проводим радиусы основных окружностей под углом a=20° к прямой, соединяющей центры колес. Эти радиусы в пересечении с основными окружностями дадут точки N1 и N2. Если центры колес выходят за пределы чертежа, построение ведут в таком порядке: строим прямую КК, касательную к начальным окружностям; от нее проводим прямую под углом a=20°. Эта прямая будет касаться основных окружностей в точках N1 и N2.

в) Строим эвольвенты, которые описывает точка П прямой при перекатывании ее по основным окружностям. При построении эвольвенты первого колеса (шестерни) отрезок N1П делим на 4 равные части (П-1, 1-2, 2-3, 3-N1) и точки П, 1, 2, 3 переносим на дугу основной окружности, получаем точки П′ 1′ 2′ 3′.Затем из точек 1′ 2′ 3′ N1 строим дуги радиусами 1′-П′, 2′-П′, 3′-П′, N1-П′ соответственно. Полученная кривая является эвольвентой.

В той же последовательности строим эвольвенту для второго зубчатого колеса.

г) Строим окружности выступов обоих колес ra4 и ra5. Для более точного построения целесообразно отложить с использованием масштабного коэффициента длины ml высоты головок на линии центров колес от точки П.

Построив окружности выступов, найдём точки их пересечения с соответствующими эвольвентами – крайние точки на профилях головок.

д) Строим окружности впадин колес радиусами rf4 и rf5. Здесь также целесообразно предварительно отложить высоты ножек с использованием масштабного коэффициента длины от точки П.

Полный профиль ножки зуба состоит из эвольвентной части и переходной кривой (галтели), которая соединяет эвольвентную часть с окружностью впадин. Профиль ножки у основания зуба строим следующим образом: из центра вращения колеса О4 проводят радиус О4О' до начала эвольвенты, а затем у основания зуба делают закругление радиусом rfm''= 9,4 мм.

е) От точки П откладываем на делительной окружности дуги: влево ÈПЕ и вправо ÈПF, равные каждая длине шага Pt. От точек П, Е и F влево откладываем дуги ÈПМ, ÈER, ÈFH, равные каждая толщине зуба по делительной окружности.

Делим дуги ПМ, ER и FH пополам. Соединяя полученные точки на делительной окружности с центром О1, получаем оси симметрии зубьев. После этого копируем эвольвенту и, поворачивая её строим остальные зубья. Аналогично строим 3 зуба второго колеса.

 

Список использованной литературы:

 

1. Прикладная механика. Геометрический синтез планетарных зубчатых передач с использованием ЭВМ. Методические указания к курсовому проекту. /Осипов Ю.Р., Лукичев Н.Г. – Вологда: ВоПИ, 1991.

2. Прикладная механика: Методические указания к курсовому проекту. Геометрический синтез цилиндрической прямозубой эвольвентной зубчатой передачи на ЭВМ /Н.Г. Л. Лукичев, Ю.Р. Осипов. – Вологда: Вопи, 1990.

3. Анурьев В.Н. Справочник конструктора-машиностроителя, 6-е изд. – М.: Машиностроение, 1982 г. т.1 – 728 с.; т.2 – 594 с; т.3 – 576 с.

4. Иванов М.Н. Детали машин. 4-е изд. – М.: Высшая школа, 1984

5. Иванов М.Н. Детали машин. 3-е изд. – М.: Высшая школа, 1976, 399 с.

6. Буланов А.В., Палочкина Н.В., Часовников Л.Д. Методические указания по расчету зубчатых передач редукторов и коробок скоростей. Ч. 1., ч. 2 – М.: Изд. МВТУ, 1980.

7. Курсовое проектирование деталей машин. / В.Н. Кудрявцев, Ю.А. Державец, Н.Н. Арефев и др.; под общ. ред. В.Н. Кудрявцева. – Л.: Машиностроение, 1983. – 393 с.

8. Проектирование механических передач. / С.А. Чернавский, Г.А. Снесарев, Б.С. Козинцев и др. – 5-е изд., - М.: Машиностроение.

9. Детали машин. Атлас конструкций / Под ред. Д.Н. Решетова, - М.: Машиностроение, 1979. – 368 с.

10. Электрические машины: каталог. – М.: Издательство стандартов, 1973. – 608 с.

11. Осипов Ю.Р., Савельев А.П. Определение контактных и изгибных напряжений в цилиндрических косозубых колесах с помощью номограмм. – М.: НИИМАШ, 1980. – 12 с.

 




Поделиться с друзьями:


Дата добавления: 2015-06-25; Просмотров: 2060; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.