Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ошибки вследствие непредсказуемости или «недоброжелательности» окружающей среды 7 страница




Вообще концепция иерархии очень важна. Химики полагают, что материя состоит из примерно сотни различных разновидностей атомов, взаимодействующих друг с другом посредством их электронов. Атомы – стайные объекты, они формируют огромные сборища, управляемые по законам их уровня. Поэтому мы, не противореча законам химии, находим удобным игнорировать атомы, когда мы думаем о больших глыбах материи. Объясняя работу автомобильного мотора, мы забываем про атомы и силы ван дер Ваальса, и предпочитаем разговор о цилиндрах и искрящих свечах. Этот пример применим не только к двум уровням – атомов и головок цилиндров. Иерархии существуют начиная от элементарных частиц субатомного уровня, к молекулам и кристаллам до макроскопических органов рассудка, могущих это осознать.

Живая материя представляет собой отдельный большой набор уровней в лестнице сложности – макромолекулы, самосворачивающиеся в свои третичные формы, внутриклеточные мембраны и органеллы, клетки, ткани, органы, организмы, популяции, сообщества и экосистемы. Подобная иерархия вложенных друг в друга единиц воплощена также и в сложных искусственных продуктах живых существ – кристаллах полупроводника, транзисторах, интегральных схемах, компьютерах и входящие в них единиц, которые могут быть поняты лишь в терминах «программного обеспечения». На каждом уровне иерархии единицы взаимодействуют друг с другом по законам этого уровня – законам, не слишком удобно сводимых к законам более низких уровней.

Всё это было уже много раз сказано, и столь очевидно, что стало почти банальностью. Но кто‑то иногда должен повторять банальности, чтобы подтвердить, что сердце находится на правильном месте! Особенно, если он желает придать значение слегка нетрадиционному виду иерархии, поскольку он может быть ложно обвинён в «редукционистской» атаке на идею самой иерархии. Редукционизм – грязное слово, а самодовольство типа «я праведнее вас» стало модным. Я с энтузиазмом следую этой моде в разговоре о механизмах, действующих в индивидуальных организмах, и защищаю «нейроэкономическое» и «программное» объяснение поведения вместо обычного нейрофизиологического (Докинз 1976b). Я бы одобрил аналогичный подход к индивидуальному развитию. Но настали времена, когда праведная проповедь становится легким заменителем мысли, и думаю, что спор о единицах отбора предоставляет примеры этого.

Нео‑вейсманистский взгляд на жизнь, который защищает эта книга, придаёт особое значение генетическому репликатору как фундаментальной единице. Я полагаю, что он играет роль атома в функциональном телеономическом толковании. Если мы хотим говорить об адаптации как существующей «для блага кое‑чего», то это «кое‑что» – активный репликатор зародышевой линии. Это маленький кусочек ДНК, один «ген» в соответствии с некоторыми определениям этого слова. Но я конечно не предполагаю, что маленькие генетические единицы действуют изолированно друг от друга; их взаимозависимость больше, чем у атомов в представлении химика. Как и атомы, гены очень стадны. Они часто связаны вместе в хромосомы, группы хромосом обернуты в ядерные мембраны, погружены в цитоплазму и заключены в клеточные мембраны. Клетки тоже обычно не изолированы, но собраны вместе, формируя огромные конгломераты, которые мы знаем как организмы. Мы теперь включены в знакомую вложенную иерархию, и нам не нужно идти дальше. В функциональном смысле гены также стадны. Они оказывают фенотипические эффекты на тела, но они не делают это изолированно. Я подчеркивал это в книге много раз.

Я могу казаться редукционистом потому, что я настаиваю на атомистическом взгляде на единицы отбора – на единицы, именно которые выживают – или не выживают, в то же время – я искренний интеракционист, когда дело доходит до развития фенотипических инструментов, с помощью которых они выживают:

 

Да, верно – фенотипический эффект гена является бессмысленной концепцией вне контекста многих, или даже всех других генов в геноме. Все же, как бы ни был сложен и замысловат организм, мы можем в основном согласиться, что организм – единица функции, и я продолжаю думать, что именно это вводит в ложный соблазн назвать его единицей отбора. Гены могут взаимодействовать, даже «смешиваться», в своём воздействии на эмбриональное развитии столько, сколько вы пожелаете. Но они не смешиваются, когда дело доходит до перехода к следующему поколению. Я не пытаюсь умалить важность индивидуального фенотипа в эволюции. Я просто стараюсь точно выяснить, какова его роль. Это всё – важный инструмент сохранения репликатора, а не то, что подлежит сохранению. (Докинз 1978a, с. 69).

 

В этой книге я использую слово «носитель» для обозначения единого и взаимосогласованного «инструмента сохранения репликатора».

Носитель – это некая единица, достаточно обособленная чтобы быть достойной наименования, которая даёт приют набору репликаторов, и которая работает как устройство для сохранения и распространения этих репликаторов. Повторюсь, носитель – это не репликатор. Успех репликатора измеряется его способностью к выживанию в форме копий. Успех носителя измеряется его способностью распространения репликаторов, находящихся Внутри Его. Очевидный и типичный носитель – индивидуальный организм, но он не может быть единственным уровнем в иерархии жизни, к которой это применимо. Мы можем рассмотреть как кандидатуры носителей хромосомы и клетки (на уровне, более низком, чем организм), а также группы и сообщества на более высоком. На любом уровне – уничтожение носителя ведёт к уничтожению всех репликаторов внутри его. Поэтому естественный отбор будет, по крайней мере до некоторой степени, благоволить репликаторам, которые побуждают их носителям сопротивляться уничтожению. В принципе это применимо и к группам организмов, поскольку уничтожение группы влечёт уничтожение всех генов внутри её[17].

Однако выживание носителя – только часть истории. Репликаторы, работающие для «воспроизводства» носителей на различных уровнях, могли бы добиваться большего успеха чем конкурирующие репликаторы, которые работают лишь для выживания их. Воспроизводство на уровне организма достаточно знакомо, чтобы не нуждаться в дальнейшем обсуждении. Воспроизводство на уровне группы более проблематично. В принципе группу можно назвать размножающейся, если она отсылает «пропагулу» – скажем, группу молодых организмов, которые отделяются и основывают новую группу. Идея вложенных уровней иерархии, на которых мог бы иметь место отбор (в моих терминах – отбор носителей) – подчеркнута у Уилсона (1975) в главе по групповому отбору (например его диаграмма 5‑1).

Выше я привёл причины для солидарности в общем скепсисе касательно «группового отбора» и отбора на других высоких уровнях, и ничто в свежей литературе не склоняет меня к передумыванию. Но здесь я хочу сказать не об этом. Здесь я хочу сказать, что нам нужно предельно ясно различать эти два различных вида концептуальных единиц – репликаторов и носителей. Я предположил, что мы поймём теорию «отбора видов» Элдриджа и Гулда наилучшим образом, если воспримем виды как репликаторы. Но большинство моделей, обычно называемых «групповым отбором», включая все рассмотренные Уилсоном (1975), и большинство рассмотренных Уэйдом (1978), неявно трактуют группы как носители. Окончательный результат обсуждаемого отбора – изменение частот генов, например рост числа «альтруистических генов» за счёт «эгоистичных». Это всё ещё гены, расцененные как репликаторы, которые фактически выживают (или нет) в ходе процесса отбора носителя.

Что касается самого группового отбора, моё предубеждение более питается теоретической изобретательностью чем биологическим интересом. Редактор ведущего математического журнала рассказал мне, что ему постоянно докучают изобретатели, предлагающие статьи с решеним квадратуры круга. Наличие чего‑то доказано невозможного часто отмечается как непреодолимый вызов для некоторых типов интеллектуальных дилетантов. Вечные двигатели обладают сходным обаянием для некоторых изобретателей‑любителей. Случай с групповым отбором вряд ли аналогичен – его невозможность и несуществование никогда не были доказаны. Однако я надеюсь меня простят за вопрос: дала ли хотя бы часть стойкой романтической привлекательности группового отбора отпор авторитетной критике, которая досталась теории с тех пор, как Винн‑Эдвардс (1962) сослужил нам ценную службу, открыв его? Антигрупповой селекционизм был принят истеблишментом как ортодоксия, и как заметил Мейнард Смит (1976a), «Это есть сущность науки – как только что‑то в ней становится ортодоксальным, так оно должно быть подвергнуто критике…». Это без сомнения здраво, но Мейнард Смит сухо продолжает: «Из этого не следует, что если что‑то ортодоксально, то оно неверно…». Более великодушные свежие обсуждения группового отбора даются Гилпином (1975), E. O. Уилсоном (1975), Уэйдом (1978), Бурманом и Левитт (1980), и Д. С. Уилсоном (1980, однако см. критику Графена 1980).

Я не собираюсь вновь углубляться в дебаты по групповому отбору против индивидуального. Главная цель этой книги состоит в том, чтобы привлечь внимание к слабости всей концепции носителя – будь этот носитель индивидуальным организмом или группой. Сейчас даже самые стойкие сторонники группового отбора согласились бы с тем, что индивидуальный организм гораздо более логичен и важен как «единица отбора»; я концентрирую мои атаки более на индивидуальном организме как моём репрезентативном носителе, чем на группе. Критика в отношении группы действеннее по умолчанию.

Может показаться, что я изобрел собственную концепцию – носителя, которую так же легко низвергнуть, как Тётушку Салли[18]. Это не так. Я просто использую название «носитель» для выражения концепции, которая фундаментальна для преобладающего ортодоксального подхода к естественному отбору. Допустимо, что в некотором фундаментальном смысле естественный отбор состоит в дифференциальном выживании генов, определённым образом взаимодействующих между собой (или бо́льших генетических репликаторов). Но гены не нагие, они работают сквозь тела (или группы тел – сообщества животных и пр.). Хотя итоговой единицей отбора действительно может быть генетический репликатор, но непосредственной единицей отбора обычно признаётся нечто большее, обычно особь. Исходя из этого, Майр (1963) посвящает целую главу демонстрации функциональной связности всего генома особи. Я обсужу идеи Майра подробно в главе 13. Форд (1975, с. 185) презрительно сбрасывает со счетов «ошибку», состоящую в том, что «единицей отбора является геном, принимая во внимание, что это особь». Гулд (1977b) говорит:

 

Отбор просто не может видеть гены и непосредственно отбирать их. Он должен использовать тела как посредников. Ген – это маленькая крупица ДНК, скрытая внутри клетки. Отбор рассматривает тела. Он одобряет некоторые тела, потому что они сильнее, лучше защищены, быстрее достигают половой зрелости, более жестоки в бою, или красивее для созерцания… Если бы, одобряя более сильное тело, отбор бы действовал непосредственно на «ген силы», то концепция Докинза была бы доказана. Если бы тела были бы однозначными картами своих генов, то соревнующиеся крупицы ДНК показали бы себя снаружи, и отбор мог бы действовать на них непосредственно. Но тела не таковы… Тела не могут дробиться в части, каждая из которых была бы построена своим геном. Сотни генов вносят вклад в построение большинства частей тела, и их действие направлено калейдоскопическим рядом воздействий окружающей среды: эмбриональный, послеродовой, внутренней и внешней.

 

Тогда, если бы это был действительно хороший аргумент, то это был бы аргумент не столько против идеи гена как единицы отбора, сколько против всей менделевской генетики. Фанатик ламаркизма Х. Г. Кеннон, действительно явно использует его в этом качестве: «живое тело – не есть нечто изолированное, но при этом это и не собрание частей, как его видел Дарвин – вроде, как я сказал ранее, большому числу скульптурок в коробке. Это трагедия современной генетики. Приверженцы нео‑менделевской гипотезы расценивают организм как большое число признаков, управляемых большим числом генов. Можно сказать, что они любят полигены – это и есть сущность их фантастической гипотезы» (Кеннон 1959 с. 131).

Большинство людей согласилось бы с тем, что это неубедительный аргумент против менделевской генетики, и он не более убедителен против взгляда на ген как единицу отбора. Ошибка, которую допускают и Гулд и Кеннон, состоит в том, что они не отличают генетику от эмбриологии. Менделизм – теория раздельного наследования, а не раздельного эмбриогенеза. Аргумент Кеннона и Гулда – это вполне валидный аргумент против раздельного эмбриогенеза в пользу смесеобразного. Я сам привожу подобные аргументы в другом месте этой книги (например – аналогия с пирогом в подразделе «нищета преформизма» в главе 9). Гены действительно взаимодействуют, и часто обессиливают друг друга в той мере, в какой их влияние на развивающиеся фенотипы связано. Но как я уже достаточно подчёркивал, сами они не смешиваются, ибо они копируются и повторно объединяются следующим поколением. Это именно то, что имеет значение для генетика, и это также имеет значение для любого изучающего единицы отбора.

Гулд продолжает:

 

Поскольку части – это не транслированные гены, то отбор даже не работает непосредственно на частях. Он принимает или отклоняет целые организмы, потому что именно сочетания частей, сложно взаимодействующих между собой, обеспечивают (или нет) преимущества. Образ отдельных генов, планируя направление своего выживания, имеет небольшое отношение к генетике развития, как мы её понимаем. Докинзу потребуется другая метафора: гены собирают «партийные собрания», формируют союзы, выказывают заинтересованность в присоединении к договору, оценивая вероятные окружающие среды. Но когда вы объединяете столь много генов, и связываете их вместе в иерархические цепи действий, обусловленных окружающими средами, то мы называем результирующий объект телом.

 

Гулд здесь ближе к истине, но истина не столь прямолинейна, что я надеюсь показать в главе 13. Намёк на неё содержится в предыдущей главе. Кратко – тот смысл, в котором гены могут, так сказать собирать «партийное собрание» и формировать «союзы» состоит в следующем. Отбор одобряет те гены, которые преуспевают в присутствии других генов, которые в свою очередь преуспевают в присутствии первых. Потому‑то и возникают в генофондах взаимно совместимые наборы генов. Это точнее и полезнее, чем сказать, что «мы называем результирующий объект телом».

Конечно, сами гены не видны отбору. Конечно, они отобраны на основании их фенотипических эффектов, и конечно они могут (как считается), иметь фенотипические эффекты лишь совместно с сотнями других генов. Но тезис этой книги состоит в том, что мы не должны попадаться в ловушку предположения, что эти фенотипические эффекты есть благо по отношению к сущности, аккуратно завёрнутой в дискретное тело (или другого дискретного носителя). Доктрина расширенного фенотипа состоит в том, что фенотипический эффект гена (генетического репликатора) лучше всего видеть как влияние на весь мир, и лишь случайно – на индивидуальный организм или иной носитель, в котором ему случилось находиться.

 

Глава 7. Эгоистичная оса – или эгоистичная стратегия?

 

Эта глава посвящена практической методологии исследований. Она адресуется тем, кто принимая теоретические тезисы этой книги, будут возражать, что практически полевые исследователи находят более полезным сосредоточить внимание на индивидуальном преимуществе. Они скажут, что видеть природный мир как поле битвы репликаторов в теоретическом смысле правильно, но в реальном исследовании мы обязаны измерять и сравнивать дарвиновскую приспособленность отдельных организмов. Я хочу обсудить конкретную часть исследования подробно, чтобы показать, что это не неизбежно. Вместо сравнения успеха индивидуальных организмов, практически часто полезнее сравнить успех «стратегий» (Мейнард Смит 1974) «программ», или «подпрограмм», усреднённых по индивидуумам, практикующим их. Из всех многочисленных исследований, которые я мог бы обсудить – например исследования по «оптимальной фуражировке» (Pyke, Pulliam & Charnov 1977; Krebs 1978; Паркер 1978a) навозных мух, вообще любой из примеров, рассмотренных в исследовании Н.Б. Девиса (1982), я выбираю исследование Брокманн роющих ос – просто потому, что я хорошо знаком с ними (Брокманн, Grafee & Докинз 1979; Брокманн & Докинз 1979; Докинз & Брокманн 1980).

Я буду использовать слово «программа» точно в таком же смысле, в каком Мейнард Смит использует слово «стратегия». Я предпочитаю слово «программа» слову «стратегия», ибо мой опыт говорит, что «стратегия» может быть с большой вероятностью неправильно истолкована – по крайней мере двояко (Докинз 1980). И кстати, следуя Оксфордскому словарю английского языка и стандартной американской практике, я предпочитаю компьютеризованный вариант слова «программа» (program), а не его академический вариант «programme», который вроде бы является заимствованием девятнадцатого века из французского. Программа (или стратегия) – рецепт для действий, набор умозрительных инструкций, которым животное «повинуется» – подобно тому, как компьютер повинуется своей программе. Компьютерный программист записывает программу на языке типа Алгол или ФОРТРАН, который может быть похожим на довольно‑таки повелительный английский язык. Механизм компьютера построен так, что его поведение очень похоже на повиновение этим квази‑английским инструкциям. Перед тем, как она сможет действовать, программа должна быть переведена (компьютером) в набор более элементарных инструкций «машинного языка», которые ближе к аппаратным средствам компьютера и дальше от лёгкого понимания человеком. В одном смысле компьютер «фактически» повинуется скорее этим машинным инструкциям, а не квази‑английской программе, хотя в другом смысле повинуется обоим и одновременно ни одной!

Человек, наблюдая и анализируя поведения компьютера, исходный текст программы для которого утерян, в принципе может восстановить программу или её функциональный эквивалент. Последние три слова критически важны. Он может писать восстановленную программу на каком‑то конкретном языке, который в данной ситуации удобнее – Алголе, ФОРТРАНе, потоковой диаграмме, или каком‑то особом строгом подмножестве человеческого языка. Но нет никакого способа узнать, на каком именно языке из них (если даже таковые имеются) программа была первоначально написана[19]. Она возможно была написана непосредственно на машинном языке, или «прошита» в компьютер при его изготовлении на заводе. Итог один любом случае: компьютер выполняет некое полезное задание, например – вычисление квадратных корней, и человек может с пользой работать с компьютером, словно он «повинуется» набору повелительных инструкций, выписанных на языке, удобном для понимания человеком. Я думаю, что во многих случаях такое «программное объяснение» поведенческих механизмов столь же пригодно и полезно, как и более очевидное «аппаратурное объяснение» любимое нейрофизиологами.

Биолог, наблюдающий животное, в некотором смысле подобен инженеру, наблюдающему за компьютером, исполняющим программу с утерянным исходным текстом. Поведение животного выглядит упорядоченно и целеустремлённо, словно бы оно повиновалось программе – упорядоченной последовательности повелительных инструкций. Но программа для животного не была потеряна, ибо она никогда не была написана. Естественный отбор складывает кирпичики каких‑то аналогов «прошитых» машинных программных кодов, одобряя мутации, так изменяющие строение нервных систем в последующих поколениях, что они будут реализовывать поведение (и обучаться изменению своего поведения) более адекватное обстановке. Адекватное – в данном случае – адекватное для выживания и распространения соответствующих генов. И хотя никакой программы в данном случае никогда не писалось, мы, как и в случае с компьютером с утерянной программой, можем для удобства думать о животном, как «повинующемся» программе, «написанной» на некотором легко понятном нам языке типа английского. Тогда мы можем (помимо прочего), представить себе альтернативные программы или подпрограммы, которые могли бы «конкурировать» между собой за «машинное время» нервных систем популяции. Хотя с аналогиями нужно обращаться осторожно, я тем не менее покажу, что мы можем продуктивно представлять себе естественный отбор, действующий непосредственно на фонд альтернативных программ или подпрограмм, и трактовать индивидуальные организмы как временных исполнителей и распространителей этих альтернативных программ.

К примеру, в частных моделях борьбы животных Мейнард Смит (1972, с. 19) постулировал пять альтернативных «стратегий» (программ):

 

1. Обычная борьба; отступать, если противник доказывает бо́льшую силу, или если он обостряет конфликт.

2. Борьба с нарастанием. Отступать только при ранении.

3. Начинать обычно. Обострять, только если противник обостряет.

4. Начинать обычно. Обострять только если противник продолжает обычно.

5. Борьба с нарастанием. Отступать при непосредственной угрозе травмы, если противник делает то же самое.

 

Для компьютерного моделирования необходимо определить эти пять «стратегий» более строго, но для понимания человеком предпочтительнее формулировать эти действия в повелительном наклонении. Важный для этой главы момент – эти пять стратегий задумывались как объекты компьютерной модели, действующие в своём правовом поле, а не как отдельные особи животных с разным поведением. Правила были выработаны в ходе компьютерного моделирования «воспроизводства» успешных стратегий (возможно – особей, воспринимающих успешные стратегии, размножающиеся и передающие генетическую склонность к воспринятию этих самых стратегий, но такие детали игнорировались). Вопрос состоял в успехе стратегий, а не индивидуумов.

Следующий важный момент – Мейнард Смит искал «наилучшую» стратегию в лишь особом смысле. Фактически он искал «эволюционно‑стабильную стратегию» или ЭСС. Понятие ЭСС было определено строго Дж. Мейнардом Смитом 1974), огрублённо её можно определить как стратегию, распространение которой в популяции делает последнюю устойчивой к внедрению всякой иной стратегии, отличающейся от ЭСС, т.е. ЭСС успешна при конкуренции с изменёнными копиями самой себя, и не вытесняется собственными «потомками». Это может показаться странной ключевой особенностью, но такое обоснование действительно очень сильное. Если программа или стратегия успешны, то значит её копии со временем становятся более многочисленными в популяции программ, и в конечном счёте станут почти всеобщими. Поэтому они станут окружены копиями самих себя. Чтобы оставаться преобладающей, она должна быть успешной в конкуренции против своих копий, и успешной в сравнении с редкими иными стратегиями, которые могли бы возникнуть вследствие мутаций или вторжений. Программа, которая не была эволюционно стабильна в этом смысле, рано или поздно исчезнет из популяции, и потому не будет предметом нашего рассмотрения.

Мейнард Смит хотел узнать, что будет в популяции, содержащей эти пять стратегий из приведённого выше списка. Есть ли из этих пяти одна, которая (случись ей преобладать), сохранила бы своё численное превосходство против всех претендентов? Он заключил, что таковой является программа номер 3; она – ESS: если она оказывается многочисленной в популяции, то никакая другая программа из списка не действует лучше, чем сама программа 3 (на деле в этом конкретном примере есть проблема – Докинз 1980, с. 7 – но здесь её можно проигнорировать). Когда мы говорим, что программа «действует лучше», или существует как «успешная», мы мысленно оцениваем этот успех как способность к размножению копий этой программы в следующем поколении; в действительности можно видимо подразумевать, что успешная программа – это такая, которая поддерживает выживание и воспроизводство животного, действующего по ней.

Мейнард Смит, вместе с Прайсом и Паркером (Мейнард Смит & Прайс 1973; Мейнард Смит & Паркер 1976) привлекли математическую теорию игр, и выяснили критические условия, при которых эта теория должна быть модифицирована, чтобы удовлетворить целям дарвинизма. В результате получилась концепция ЭСС – стратегии, которая действует относительно успешно против копий самой себя. Я уже дважды защищал важность концепции ЭСС и разъяснял её широкую применимость в этологии (Докинз 1976a, 1980), и я не буду здесь излишне повторяться. Здесь моя цель состоит в том, чтобы показать применимость данного направления мысли к предмету этой книги – обсуждению уровня, на котором действует естественный отбор. Я начну, вновь рассматривая специфическую часть исследования, где использовалась концепция ЭСС. Все факты, которые я приведу, взяты из полевых наблюдений доктора Джейн Брокманн, которые полностью опубликованы в другом месте и кратко упомянуты в главе 3. Мне потребуется дать краткий отчёт о самом исследовании, прежде чем я смогу увязать его с главной мыслью этой главы.

Золотой сфекс Sphex ichneumoneus – одиночная роющая оса; одиночная в том смысле, что не образует никаких социальных групп и не имеет бесплодных рабочих, хотя самки имеют привычку рыть свои норки недалеко друг от друга. Каждая самка откладывает свои яйца, и весь её труд по снабжению молодого поколения провизией заканчивается до откладывания яйца (в отличие от бембексов и других роющих ос, которые постоянно носят провизию растущей личинке). Самка кладет одно яйцо в подземное гнездо, куда предварительно положена провизия – парализованные жалом самки кузнечики сем. Tettigoniidae. Затем она закрывает это гнездо, оставляя личинку вкушать этих кузнечиков, а сама в это время начинает работу над новым гнездом. Жизнь взрослой самки длится примерно шесть летних недель. Если бы кто‑то захотел измерить успех самки, то он мог бы быть примерно оценить его как число яиц, отложенных самкой в завершённые норки и полностью снабжённых провизией.

Вопрос, который особенно заинтересовал нас, состоял в том, что у осы были два явных альтернативных способа приобретения норки. Самка могла бы или вырыть норку самостоятельно, или пытаться захватить норку, вырытую другой осой. Мы назвали эти два поведенческих паттерна соответственно «рытём» или «захватом». Тогда, как могут два альтернативных пути достижения того же результата, в нашем случае – два альтернативных способа приобретения гнезда, сосуществовать в одной популяции? Не правда ли – один из них должен быть более успешен, и соответственно – менее успешный должен быть удален от популяции естественным отбором? Существуют две общие причины, почему это может не случиться, которые я сформулирую на жаргоне ЭСС теории: во‑первых, «рытьё» и «захват» могут быть двумя результатами одной «условной стратегии»; во‑вторых, они могли бы быть одинаково успешны в некоторой критической пропорции, поддержанной частотно‑зависимым отбором – частью «смешанной ЭСС» (Мейнард Смит, 1974, 1979). Если бы было верно первое, то все осы были бы запрограммированы на одно и то же условное правило: «Если X истинно, то “рыть”, иначе – “захватывать”»; например – «если Вы – маленькая оса, то “рыть”, иначе используйте превосходство вашего размера, чтобы захватить нору другой осы». Мы не смогли найти каких‑то свидетельств наличия условной программы такого, или любого подобного вида. Вместо этого мы убедились, что наблюдаемым фактам удовлетворяет второе – «смешанная ЭСС».

Теория рассматривает два вида смешанных ЭСС, или скорее – два полюса континуума. Первый полюс – сбалансированный полиморфизм. В этом случае, если мы хотим пользоваться термином «ЭСС», то стабильность стратегии нужно понимать как инвариантное состояние популяции, а не неизменность поведения индивидуумов, реализующих тот или иной способ действий. Если бы реализовался этот вариант, то в популяции существовали бы две отличающиеся разновидности ос – «копатели» и «захватчики», которые в общем и среднем были бы одинаково успешны. Если бы они одинаково успешными не были, то естественный отбор рано или поздно устранил бы менее успешную из популяции. Надежды на то, что по случайному совпадению выгоды и издержки рытья точно балансировали бы таковые для захвата, были бы чрезмерны. Скорее здесь подойдёт частотно‑зависимый отбор. Постулируем пропорцию критического равновесия копателей, «P» при соблюдении которой эти две разновидности ос одинаково успешны. Тогда, если доля копателей в популяции падает ниже критической, то копатели будут одобрены отбором, если же возрастает выше – будут одобрены захватчики. Таким образом популяция колебалась бы вблизи равновесного соотношения.

Нетрудно предложить вероятные причины частотной зависимости такого рода. Понятно, что новые норы появляются в результате работы копателей; чем меньше копателей в популяции, тем сильнее будет соперничество между захватчиками, и меньшая выгода типичного захватчика. Наоборот, когда копатели очень многочисленны, то доступные норы изобилуют, и захватчики будут процветать. Но как я сказал, частотно‑зависимый полиморфизм – лишь один край континуума. Обратимся теперь к другому краю.

На другом краю континуума среди особей нет никакого полиморфизма. В устойчивом состоянии все осы повинуются той же самой программе, но сама эта программа – смесь.[20]. Каждая оса повинуется инструкции: «Копай с вероятностью p, захватывай с вероятностью 1−p»; например, «Копай в 70% случаев, захватывай в 30% случаев». Если это всё считать «программой», то можно трактовать «рытьё» и «захват» как «подпрограммы». Каждая оса снабжена обеими подпрограммами. Она запрограммирована на выбор в конкретном случае одной или другой из них с характеристической вероятностью p.




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 255; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.