Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос 6. Миелиновые и безмиелиновые нервные волокна. Механизмы проведения нервных импульсов




Отростки нейронов почти всегда покрыты оболочкой (миелином). Исключение составляют свободные окончания некоторых отростков. Отросток вместе с оболочкой называется «нервное волокно».
Нервное волокно состоит из: Осевого цилиндра – отросток нервной клетки: аксон или дендрит
Глиальной оболочки, окружающей осевой цилиндр в виде муфты. В ЦНС она образована олигодендроглией, а в ПНС – шванновскими клетками (нейролеммоциты – разновидность олигодендрошлии).
Нервные волокна классифицируются на Безмиелиновые и Миелиновые (имеющие миелиновую оболочку).
Безмиелиновые нервные волокна являются частью вегетативной нервной системы и представлены аксонами эффекторных нейронов. Они есть и в ЦНС, но в меньшем количестве.
Строение: В центре находится ядро олигодендроцита (леммоцита), а по периферии в его цитоплазму проникают10-20 осевых цилиндров. Такие нервные волокна ещё называют «волокна кабельного типа». При погружении осевого цилиндра в цитоплазму олигодендроцита участки плазмолеммы последнего сближаются, и формируется брыжейка — «мезаксон» или сдвоенная мембрана. С поверхности нервное волокно покрыто базальной мембраной.
Миелиновые нервные волокна являются частью ЦНС, соматических отделов ПНС, а также преганглионарных отделов вегетативной нервной системы. Они могут содержать как аксоны, так и дендриты нейронов.
Строение: Осевой цилиндр всегда 1, расположен в центре. Оболочка имеет 2 слоя: внутренний (миелиноый) и наружный (нейролемма), представленный ядром и цитоплазмой шванновской клетки. Снаружи имеется базальная мембрана. Миелиновый слой представляет собой насколько слоёв мембраны олигодендроцита (леммоцита). Мембрана концентрически закручена вокруг осевого цилиндра. Фактически это очень удлинённый мезаксон. Мезаксоны образуют языковидные цитоплазматические отростки.
Процесс миелинизации – это образование миелиновой оболочки. Он происходит на поздних стадиях эмбриогенеза и в первые месяцы после рождения.
Стоит отметить, что в ЦНС есть особенности миелинизации: 1 олигодендроцит образует миелиновую оболочку вокруг нескольких осевых цилиндров (с помощью нескольких отростков, которые вращаются). Нет базальной мембраны.
Строение миелинового волокна.
Миелин регулярно прерывается в области узловых перехватов Ранвье. Расстояние между перехватами 0,3 – 1,5 нм. В области перехвата осуществляется трофика осевого цилиндра. Миелин имеет на своей поверхности насечки. Эти участки рассечения миелина увеличивают гибкость нервного волокна и являются «запасом» при растяжении. В ЦНС насечек нет.
Миелин окрашивается красителями на липиды: Судан, Осмиевая кислота.
Функции миелина:
Увеличение скорости проведения нервного импульса. У безмиелиновых волокон скорость 1-2 м/с, а у миелиновых – 5-120 м/с.
В области перехватов сосредоточены Na-каналы, где возникают биоэлектрические токи. Они перескакивают от 1 перехвата к другому. Это — сальтаторное проведение, то есть проведение импульса скачками.
Миелин – изолятор, который ограничивает вхождение токов, распространяющихся вокруг.
Различие в строении миелинового и безмиелинового волокна.

Безмиелиновое волокно Миелиновое волокно
Несколько осевых цилиндров 1 осевой цилиндр
Осевые цилиндры — аксоны Осевыми цилиндрами могут быть те, и др. Осевые цилиндры толще, чем в безмиелиновых волокнах
Ядро олигодендроцита – в центре Ядро и цитоплазма олигодендроцита – на периферии волокна
Мезаксоны короткие Мезаксон многократно закручен вокруг осевого циландра, образуется миелиновая оболочка
Na- каналы по всей длине осевого цилиндра Na- каналы только в перехватах Ранвье
Строение периферического нерва.
Нерв состоит из миелиновых и безмиелиновых волокон, сгруппированных в пучки. Он содержит и афферентные, и эфферентные волокна.

Механизмы проведения нервного импульса.
Синапсы — это специальные межклеточные соединения, используемые для перехода сигнала из одной клетки в другую.
Контактирующие участки нейронов очень тесно прилегают друг к другу. Но все же между ними зачастую остается разделяющая их синаптическая щель. Ширина синаптической щели составляет порядка нескольких десятков нанометров.
Чтобы нейтроны успешно функционировали, необходимо обеспечить их обособленность друг от друга, а взаимодействие между ними обеспечивают синапсы.
Синапсы выполняют функцию усилителей нервных сигналов на пути их следования. Эффект достигается тем, что один относительно маломощный электрический импульс освобождает сотни тысяч молекул медиатора, заключенных до того во многих синаптических пузырьках. Залп молекул медиатора синхронно действует на небольшой участок управляемого нейрона, где сосредоточены постсинаптические рецепторы — специализированные белки, которые преобразуют сигнал теперь уже из химической формы в электрическую.
В настоящее время хорошо известны основные этапы процесса освобождения медиатора. Нервный импульс, т. е. электрический сигнал, возникает в нейроне, распространяется по его отросткам и достигает нервных окончаний. Его преобразование в химическую форму начинается с открывания в пресинаптической мембране кальциевых ионных каналов, состояние которых управляется электрическим полем мембраны. Теперь роль носителей сигнала берут на себя ионы кальция. Они входят через открывшиеся каналы внутрь нервного окончания. Резко возросшая на короткое время примембранная концентрация ионов кальция активизирует молекулярную машину освобождения медиатора: синаптические пузырьки направляются к местам их последующего слияния с наружной мембраной и, наконец, выбрасывают свое содержимое в пространство синаптической щели.
Синаптическая передача осуществляется последовательностью двух пространственно разобщенных процессов: пресинаптического по одну сторону синаптической щели и постсинаптического по другую (рис. 3). Окончания отростков управляющего нейрона, повинуясь пришедшим в них электрическим сигналам, высвобождают в пространство синаптической щели специальное вещество-посредник (медиатор). Молекулы медиатора достаточно быстро диффундируют через синаптическую щель и возбуждают в управляемой клетке (другом нейроне, мышечном волокне, некоторых клетках внутренних органов) ответный электрический сигнал. В роли медиатора выступает около десятка различных низкомолекулярных веществ:
ацетилхолин (эфир аминоспирта холина и уксусной кислоты);глутамат (анион глутаминовой кислоты);ГАМК (гамма-аминомасляная кислота);серотонин (производное аминокислоты триптофана);аденозин и др.
Они предварительно синтезируются пресинаптическим нейроном из доступного и относительно дешевого сырья и хранятся вплоть до использования в синаптических пузырьках, где, словно в контейнерах, заключены одинаковые порции медиатора (по несколько тысяч молекул в одном пузырьке).
Схема синапса
Вверху — участок нервного окончания, ограниченный пресинаптической мембраной, в которую встроены пресинаптические рецепторы; синаптические пузырьки внутри нервного окончания наполнены медиатором и находятся в разной степени готовности к его освобождению; мембраны пузырьков и пресинаптическая мембрана содержат пресинаптические белки. Внизу — участок управляемой клетки, в постсинаптическую мембрану которой встроены постсинаптические рецепторы
Синапсы — удобный объект регулирования потоков информации. Уровень усиления сигнала при его передаче через синапс можно легко увеличить или уменьшить, изменяя количество освобождаемого медиатора, вплоть до полного запрета на передачу информации. Теоретически это можно осуществить путем направленного воздействия на любой из этапов высвобождения медиатора.

 

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 3157; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.