Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

БИЛЕТ № 7




КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Конструкционные материалы подразделяются: по природе материалов — на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению — на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы — на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности — на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности. Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами. В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Чугуны Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы. В зависимости от структуры и состояния,в котором находится углерод (свободный или химически связанный),различают серые, белые и ковкие чугуны.Чугуны также классифицируют в зависимости от назначения– на конструкционные и со специальными свойствами;и от химсостава– на легированные и нелегированные. Как конструкционный материал наиболее широко применяются серые чугуны,в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью,хорошими литейными и другими технологическими свойствами(жидкотекучестью,малой линейной усадкой, обрабатываемостью резанием), мало чувствительны к концентрации переменных напряжений,антифрикционны. В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости,плохой обрабатываемости резанием –белые чугуны не применяются в качестве конструкционных материалов. Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям.Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью,но стоят на 30… 100% дороже. Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам.Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами. Для улучшения прочностных характеристик и получения особых эксплуатационных свойств: износостойкости,немагнитности,коррозионной стойкости и т.д., в состав чугунов вводят легирующие элементы (никель,хром, медь, алюминий,титан и др.).Легирующими элементами могут служить также марганец(при содержании более 2%) и кремний(более 4%). Марки чугуна обозначаются буквами, показывающими назначение чугуна: СЧ –серый чугун,ВЧ – высокопрочный,КЧ – ковкий чугун; для антифрикционных чугунов в начале марки указывается буква А (АСЧ,АВЧ, АКЧ). Цифры в обозначении марки нелегированного чугуна указывают на его механические свойства. Для серых чугунов цифры указывают величину предела прочности(кгс/мм2) при растяжении.Например, марка СЧ18 показывает,что чугун имеетσut = 18 кгс/мм2 = 180 МПа.Для высокопрочного и ковкого чугуна цифры определяют предел прочности(кгс/мм2) и относительное удлинение при растяжении в процентах,например ВЧ60-2– высокопрочный чугун с σut = = 600МПа и δ= 2%.

Стали Стали – это деформируемые сплавы железа с углеродом и другими элементами. По хим.составу стали делят на углеродистые и легированные.Углеродистые стали содержат кроме железа и углерода также марганец(до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей:сера увеличивает хрупкость в горячем состоянии(красноломкость),а фосфор – при пониженных температурах(хладноломкость).В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне-(0,25 < С ≤ 0,6%) и высокоуглеродистые(C > 0,6%) стали. В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром,никель, молибден,вольфрам, ванадий,титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний– более 0,8%. По назначению стали делят на конструкционные,инструментальные и с особыми свойствами.Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми(С ≤ 0,7%), так и легированными.Инструментальные стали служат для изготовления режущего,ударно-штампового и мерительного инструментов.Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем,кремнием и другими элементами.К сталям с особыми свойствами относят нержавеющие,немагнитные,электротехнические стали, стали постоянных магнитов и др. По качеству стали делят на обыкновенные,качественные,высоко и особо высококачественные.Различие между ними заключается в количестве вредных (сера и фосфор) примесей.Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных– каждого элемента не более 0,035%; а в высококачественных– не более 0,025%. По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»).Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки. Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы– А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства. Степень раскисления обозначается индексами,стоящим справа от номера марки:кп – кипящая,пс – полуспокойная,сп – спокойная.Например, сталь Ст2кп – сталь группы А, кипящая;БСт3пс – сталь группы Б, полуспокойная;ВСт5сп – сталь группы В, спокойная. Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …,70), показывающими среднее содержание углерода в стали в сотых долях процента.Эти стали можно условно разделить на несколько групп. Стали08, 10 обладают высокой пластичностью,хорошо штампуются и свариваются.Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью.Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием.Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью,износостойкостью и упругостью,используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки. Углеродистые инструментальные стали маркируют буквой У и цифрами, которые соответствуют содержанию углерода в десятых долях процента, например, сталь марки У9 содержит в среднем 0,9% углерода. Легированными называют стали, в состав которых для придания им специальных свойств вводят легирующие элементы. Они по-разному влияют на свойства стали: марганец повышает прочность и износостойкость; кремний увеличивает упругие характеристики стали; хром повышает коррозионную стойкость, твердость, прочность, жаропрочность; никель снижает коэффициент линейного расширения, повышает прочность и износостойкость; вольфрам и молибден повышают прочность и твердость, улучшают режущие свойства при повышенной температуре. Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента(две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах.Цифры за буквой не ставятся при содержании легирующего элемента менее1,5%. Легирующие элементы обозначаются следующими буквами: Т –титан, С – кремний,Г – марганец,Х – хром, Н – никель, М – молибден,В – вольфрам и т.п. Например,нержавеющая сталь Х18Н10Т содержит 18% хрома,10% никеля и до1,5% титана; конструкционная легированная сталь 30ХГС содержит0,30% углерода, а хрома, марганца и кремния до1,5% каждого;инструментальная легированная сталь 9ХС содержит0,9% углерода, а хрома и кремния до 1,5% каждого.В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%. Обозначения марок некоторых специальных сталей включают впереди букву,указывающую на назначение стали. Например,буква Ш –шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э –электротехническая и т.д. Обладая хорошими механическими характеристиками,стали являются наиболее распространенным конструкционным материалом.Существенный их недостаток– большая плотность и, как следствие,небольшая удельная прочность и удельная жесткость.Стали обладают также малой коррозийной стойкостью,а применение нержавеющих сталей для подобных целей дорого.

 

БИЛЕТ № 8. Легкие сплавы.

Современная промышленность нуждается в легких сплавах высокой прочности, обладающих хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

Алюминиевые сплавы, сплавы на основе алюминия. Первые А. с. получены в 50-х гг. 19 в.; они представляли собой сплав алюминия с кремнием и характеризовались невысокими прочностью и коррозионной стойкостью.

Магниевые сплавы, сплавы на основе магния. Наиболее прочные, в том числе и наиболее жаропрочные, М. с. разработаны на основе систем магний — металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов, пригодных для легирования М. с., сравнительно невелик. М. с. разделяются на 2 основные группы: литейные — для производства фасонных отливок и деформируемые — для производства полуфабрикатов прессованием, прокаткой, ковкой и штамповкой. Историческая справка. Первые М. с. появились в начале 20 века (под названием "электрон", теперь мало употребляемым). Значение конструкционных промышленных материалов М. с. приобрели в конце 20-х — начале 30-х годов 20 века, то есть почти через 100 лет после того как французский химик А. Бюсси впервые выделил магний в чистом виде (1828). До конца 40-х годов применялись главным образом сплавы на основе систем Mg — Al — Zn и Mg — Mn. Дальнейшему прогрессу в области создания М. с. способствовало открытие модифицирующего и рафинирующего действия циркония. В 50-х годах начали применяться сплавы на основе систем Mg — Zn — Zr, Mg — p. з. м. (редкоземельный металл) — Zr (или Mn), Mg — Th, а также сверхлёгкие сплавы на основе системы Mg — Li. Производство и потребление магния и М. с. возрастает. Мировое производство магния к началу 2-й мировой войны 1939—45 составило около 50 тысяч т, в 1969 ~ 2 млн. т, из них ~ 40—50% расходуется на производство отливок и деформированных полуфабрикатов. Титановые сплавы, сплавы на основе титана. Лёгкость, высокая прочность в интервале температур от криогенных (-250 °С) до умеренно высоких (300— 600 °С) и отличная коррозионная стойкость обеспечивают Т. с. хорошие перспективы применения в качестве конструкционных материалов во многих областях, в частности в авиации и др. отраслях транспортного машиностроения. Бериллиевые сплавы, сплавы на основе бериллия (Be). Промышленное применение Б. с. началось в 50-х гг. 20 в. Получение изделий из Be путём пластической деформации затруднено, т.к. Be обладает низкой пластичностью (вследствие гексагональной структуры и наличия примесей). При пластической деформации Be скольжение происходит в первую очередь в зёрнах, благоприятно ориентированных к прилагаемому напряжению. Неблагоприятная ориентация соседних зёрен вызывает на их стыке возникновение значительных напряжений, которые приводят к зарождению трещин. Эти недостатки в структуре Be (малое количество плоскостей и направлений скольжения) устраняются в некоторых Б. с., которые образуются введением т. н. пластичной матрицы (одного из металлов Ag, Sn, Cu, Si, Al и др.). Матрица обволакивает зёрна Be и способствует релаксации напряжений на границах неориентированных зёрен и развитию пластической деформации. При малом содержании в Be пластичной матрицы деформируется в основном Be, а матрица является релаксатором напряжений. При значительном содержании пластичной матрицы (например, сплавы Be с Al) пластическая деформация осуществляется в основном за счёт пластичного металла. Б. с. с повышенным содержанием пластичной матрицы легко деформируются (прокатываются, вытягиваются, куются), но обладают меньшей прочностью по сравнению с Б. с., имеющими пониженное содержание пластичной матрицы, и с Be.

БИЛЕТ № 9. Медные сплавы

  Медные сплавы — первые металлические сплавы, созданные человеком. Примерно до сер. 20 в. по мировому производству медные сплавы занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне. При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определённой электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3/2, 21/13 или 7/4). Этим соединениям условно приписывают формулы CuZn, Cu5Sn, Cu31Sn8, Cu9Al4, CuBe и другие. В многокомпонентных медных сплавов часто присутствуют сложные металлические соединения неустановленного состава, которые значительно твёрже, чем раствор на основе меди, но весьма хрупки (обычно в двухфазных и многофазных медных сплавов доля их в структуре намного меньше, чем твёрдого раствора на основе меди). Медные сплавы получают сплавлением меди с легирующими элементами или с промежуточными сплавами — лигатурами, содержащими легирующие элементы. Для раскисления (восстановления окислов) широко применяют введение в расплав малых добавок фосфора (десятые доли %). Медные сплавы подразделяют на деформируемые и литейные. Из деформируемых Медных сплавов отливают (в изложницы или непрерывным методом) круглые и плоские слитки, которые подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. Медные сплавы хорошо обрабатываются давлением, и деформированные полуфабрикаты составляют основную долю всего объёма их производства. Литейные медные сплавы обладают хорошими литейными свойствами, из них отливкой в земляные и металлические формы получают фасонные детали, а также декоративно-прикладные изделия и скульптуру.

БАББИТЫ (по ГОСТ 1320-74)

Общие сведения. Баббиты — белые легкоплавкие анти фрикционные сплавы на основе олова или свинца. Применяются для заливки вкладышей подшипников скольжения различных машин. Основные требования, предъявляемые к антифрикционным сплавам, определяются условиями работы вкладыша подшипника. Антифрикционные сплавы должны иметь высокую износостойкость и малый коэффициент трения между валом и подшипником; достаточную пластичность для лучшей прирабатываемости к поверхности вала; твердость, достаточную для вкладыша как опоры вала, но не вызывающую сильного износа самого вала; обладать микрокапиллярностью, т.е. способностью удерживать смазочные материалы. Указанные требования обеспечиваются неоднородной структурой антифрикционных сплавов, состоящей из мягкой основы с равномерно распределенными в ней твердыми включениями.

При вращении вал опирается на твердые частицы, обеспечивающие износостойкость и способность воспринимать сравнительно высокие удельные давления, а мягкая основа, изнашиваясь быстрее, прирабатывается к валу и образует сеть каналов (микрорельеф). удерживающих смазочный материал.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 606; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.