Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рассеяние на кристалле




Следующий пример — это явление, в котором интерферен­цию амплитуд вероятности следует проанализировать тщатель­нее. Речь идет о процессе рассеяния нейтронов на кристалле. Пусть имеется кристалл, в котором много атомов, а в центре каждого атома — ядро; ядра расположены периодически, и откуда-то издалека на них налетает пучок нейтронов. Различ­ные ядра в кристалле можно пронумеровать индексом i, где i пробегает целые значения 1, 2, 3,..., N, а N равняется общему числу атомов. Задача состоит в том, чтобы подсчитать вероят­ность того, что нейтрон окажется в счетчике, изображенном на фиг. 1.5.

Фиг. 1.5. Измерение рассеяния нейтронов на кристалле.

 

Для каждого отдельного атома i амплитуда того, что нейтрон достигнет счетчика С, равна амплитуде того, что нейтрон из источника S попадет в ядро i, умноженной на ампли­туду а рассеяния в этом месте и умноженной на амплитуду того, что он из i попадет в счетчик С. Давайте запишем это:

Написав это, мы предположили, что амплитуда рассеяния а — одна и та же для всех атомов. Здесь у нас есть множество, по-видимому, неразличимых путей. Они неразличимы оттого, что нейтрон с небольшой энергией рассеивается на ядре, не выбивая при этом самого атома с его места в кристалле — никакой «отметки» о рассеянии не остается. Согласно нашим прежним рассуждениям, полная амплитуда того, что нейтрон попал в С, включает в себя сумму выражения (1.11) по всем атомам:

Из-за того, что складываются амплитуды рассеяния на ато­мах, по-разному расположенных в пространстве, у амплитуд будут разные фазы, и это даст характерную интерференционную картину, которую мы уже анализировали на примере рассеяния света на решетке.

Интенсивность нейтронов как функция угла в подобном опыте действительно ч часто обнаруживает сильнейшие изменения — очень острые интерференционные пики, между которы­ми ничего нет (фиг. 1.6, а).

Фиг.1.6. Скорость счета нейтронов как функция угла, а — для ядер со спином 0; б — вероятность рассеяния с перево­ротом спина; в — наблюдаемая скорость счета для ядра со спи­ном 1 / 2.

 

Однако в некоторых сортах кристал­лов этого не случается, в них наряду с упомянутыми выше дифракционными пиками имеется общий фон от рассеяния во всех направлениях. Мы должны попытаться понять столь та­инственную с виду причину этого. Дело в том, что мы не учли одного важного свойства нейтрона. Его спин равен 1/2. и тем самым он может находиться в двух состояниях: либо его спин направлен вверх (скажем, поперек страницы на фиг. 1.5), либо вниз. И если у ядер самого кристалла спина нет, то спин нейтрона никакого действия не окажет. Но когда и у ядер кристалла есть спин, равный, скажем, тоже 1/2, то вы заметите фон от описанного выше размазанного рассеяния. Объяснение состоит в следующем.

Если спин нейтрона куда-то направлен и спин атомного ядра направлен туда же, то в процессе рассеяния направление спина не меняется. Если же спины нейтрона и атомного ядра направлены в противоположные стороны, то рассеяние может происходить посредством двух процессов, в одном из которых направления не меняются, а в другом происходит обмен направлениями. Это правило о том, что сумма спинов не должна меняться, аналогично нашему классическому закону сохране­ния момента количества движения. И мы уже в состоянии будем понять интересующее нас явление, если предположим, что все ядра, на которых происходит рассеяние, имеют одно и то же направление спина. Нейтрон с тем же направлением спина тогда рассеется так, что получится ожидавшееся узкое интерферен­ционное распределение. А что будет с нейтроном с противопо­ложным направлением спина? Если он рассеивается без пере­ворота направления спина, то ничего по сравнению со сказан­ным не меняется; но если при рассеянии оба спина перевора­чиваются, то, вообще говоря, можно указать, на каком из ядер произошло рассеяние, потому что именно у этого ядра спин перевернулся. Но если мы в состоянии указать, на каком атоме случилось рассеяние, то причем здесь остальные атомы? Ни при чем, конечно. Рассеяние здесь такое же, как от отдельного атома.

Чтобы учесть этот эффект, надо видоизменить математиче­скую формулировку уравнения (1.12), потому что в том анализе состояния не были охарактеризованы полностью. Пусть вна­чале у всех нейтронов, вылетающих из источника, спин направ­лен вверх, а у всех ядер кристалла — вниз. Во-первых, нам нужна амплитуда того, что в счетчике нейтронов их спин ока­жется направленным вверх и все спины в кристалле будут по-прежнему смотреть вниз. Это ничем не отличается от наших прежних рассуждений. Обозначим через а амплитуду рассея­ния без переворота спина. Амплитуда рассеяния от i -го атома, разумеется, равна

Поскольку все спины атомов направлены вниз, разные альтерна­тивы (разные значения i) нельзя друг от друга отличить. В этом процессе все амплитуды интерферируют.

Но есть и другой случай, когда спин детектируемого нейтро­на смотрит вниз, хотя вначале, в S, он смотрел вверх. Тогда в кристалле один из спинов должен перевернуться вверх, скажем спин k-го атома. Допустим, что у всех атомов амплитуда рас­сеяния с переворотом спина одна и та же и равна 6. (В реальном кристалле имеется еще одна неприятная возможность: пере­вернутый спин переходит к какому-то другому атому, но до­пустим, что в нашем кристалле вероятность этого мала.) Тогда амплитуда рассеяния равна

Если мы спросим теперь, какова вероятность того, что у нейтро­на спин окажется направленным вниз, а у k-го ядра — вверх, то она будет равняться квадрату модуля этой амплитуды, т. е. просто | b |2, умноженному на |<С|k><k|S>|2. Второй множитель почти не зависит от того, где атом k расположен в кристалле, и все фазы при вычислении квадрата модуля ис­чезают. Вероятность рассеяния на любом ядре кристалла с пере­воротом спина, стало быть, равна

что дает гладкое распределение, как на фиг. 1.6, б.

Вы можете возразить: «А мне все равно, какой атом перевер­нулся». Пусть так, но природа-то это знает, и вероятность на самом деле выходит такой, как написано выше,— никакой интерференции не остается. А вот если вас заинтересует ве­роятность того, что спин в детекторе будет направлен вверх, а спины всех атомов — по-прежнему вниз, то вы должны будете взять квадрат модуля суммы:

Поскольку у каждого слагаемого в этой сумме есть своя фаза, то они интерферируют и появляется резкая интерференционная картина. И если мы проводим эксперимент, в котором мы не наблюдаем спина детектируемого нейтрона, то могут произойти события обоих типов и сложатся отдельные вероятности. Полная вероятность (или скорость счета) как функция угла тогда выглядит подобно кривой на фиг. 1.6, в.

Давайте еще раз окинем взглядом физику этого опыта. Если вы способны в принципе различить взаимоисключающие ко­нечные состояния (хотя вы и не собирались на самом деле этого делать), то полная конечная вероятность получается подсчетом вероятности каждого состояния (а не амплитуды) и последую­щим их сложением. А если вы неспособны даже в принципе различить конечные состояния, тогда надо сперва сложить амплитуды вероятностей, а уж потом вычислять квадрат моду­ля и находить самую вероятность. Заметьте особенно, что если бы вы попытались представить нейтрон в виде отдельной волны, то получили бы одно и то же распределение и для рассеяния нейтронов, вращающихся спином вниз, и для нейтронов, вра­щающихся спином вверх. Вы должны были бы сказать, что «волна» нейтронов со спином, направленным вниз, пришла ото всех различных атомов и интерферирует так же, как это делает одинаковая по длине волна нейтронов со спином, направленным вверх. Но мы знаем, что на самом деле это не так. Так что (мы уже это отмечали) нужно быть осторожным и не представлять себе чересчур реально волны в пространстве. Они полезны для некоторых задач. Но не для всех.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 761; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.