Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Волновые свойства электронов




Теория Бора – Зоммерфельда оказалась не в состоянии объяснить обнаруженную тонкую структуру атомных спектров и была непоследовательной: она использовала как классические представления, так и чуждые ей квантовые. В частности, электрон считался классической частицей, но из всего множества возможных траекторий отбирались лишь те, которые удовлетворяли условиям квантования.

В 1923 г. Л. де Бройль (L. de Broglie) выдвинул гипотезу, что электрон (и другие микрочастицы) не является классической корпускулой, но должен обладать также и волновыми свойствами. Тем самым де Бройль обобщил понятие эйнштейновского корпускулярно-волнового дуализма электромагнитного излучения. Согласно де Бройлю, частице с энергией и импульсом отвечает некоторая монохроматическая волна, частота и волновой вектор которой связаны с

характеристиками частицы соотношениями
.

Они в точности совпадают с соотношениями Эйнштейна для фотона и световой волны. Следовательно, дебройлевская длина волны частицы

.
Правило квантования для одномерной частицы получает наглядную волновую интерпретацию:

,

т.е. на длине траектории должно укладываться целое число длин волн (ср. с известным из школьного курса условием образования стоячих волн на струне с закрепленными концами).

Гипотеза де Бройля вскоре получила блестящее экспериментальное подтверждение: в 1927 г. Дэвиссон и Джермер (C. Davisson, L. Germer) наблюдали дифракцию пучка электронов на монокристалле никеля (периодической атомной структуре – аналоге используемой в оптике дифракционной решетке). Для использованных ими нерелятивистских электронов, получивших кинетическую энергию при прохождении разности потенциалов , получаем
.

Отсюда, выражая в вольтах, получим длину электронной волны

.

При В находим см, что отвечает длине волны мягкого рентгеновского излучения и среднему межатомному расстоянию в кристаллической решетке. Поэтому при этих условиях дифракция электронов должна быть аналогична открытой еще в 1912 г. дифракции рентгеновских лучей, что и наблюдалось в действительности.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 732; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.