Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Объектно-ориентированный анализ систем. Основы UML




 

Альтернативой структурному подходу является объектно-ориентированный анализ и проектирование систем. Основными понятиями объектно-ориентированного подхода являются объект и класс.

Объект — предмет или явление, имеющее четко определенное поведение и обладающие состоянием, поведением и индивидуальностью. Структура и поведение схожих объектов определяют общий для них класс. Класс – это множество объектов, связанных общностью структуры и поведения (абстракция объектов). Следующую группу важных понятий объектного подхода составляют наследование и полиморфизм. Понятие полиморфизм может быть интерпретировано как способность класса принадлежать более чем одному типу. Наследование означает построение новых классов на основе существующих с возможностью добавления или переопределения данных и методов.

Важным качеством объектного подхода является согласованность моделей деятельности организации и моделей проектируемой информационной системы от стадии формирования требований до стадии реализации. По объектным моделям может быть прослежено отображение реальных сущностей моделируемой предметной области (организации) в объекты и классы информационной системы.

Большинство существующих методов объектно-ориентированного подхода включают язык моделирования и описание процесса моделирования. Процесс – это описание шагов, которые необходимо выполнить при разработке проекта. В качестве языка моделирования объектного подхода используется унифицированный язык моделирования UML, который содержит стандартный набор диаграмм для моделирования.

Диаграмма (Diagram) — это графическое представление множества элементов. Чаще всего она изображается в виде связного графа с вершинами (сущностями) и ребрами (отношениями) и представляет собой некоторую проекцию системы.

Объектно-ориентированный подход обладает следующими преимуществами:

1) Объектная декомпозиция дает возможность создавать модели меньшего размера путем использования общих механизмов, обеспечивающих необходимую экономию выразительных средств. Использование объектного подхода существенно повышает уровень унификации разработки и пригодность для повторного использования, что ведет к созданию среды разработки и переходу к сборочному созданию моделей.

2) Объектная декомпозиция позволяет избежать создания сложных моделей, так как она предполагает эволюционный путь развития модели на базе относительно небольших подсистем.

3) Объектная модель естественна, поскольку ориентированна на человеческое восприятие мира.

К недостаткам объектно-ориентированного подхода относятся высокие начальные затраты. Этот подход не дает немедленной отдачи. Эффект от его применения сказывается после разработки двух–трех проектов и накопления повторно используемых компонентов. Диаграммы, отражающие специфику объектного подхода, менее наглядны.

Основными диаграммами UML являются:

1) диаграмма прецедентов;

2) диаграмма классов;

3) диаграмма объектов;

4) диаграмма последовательностей;

5) диаграмма взаимодействия;

6) диаграмма состояний;

7) диаграмма активности;

8) диаграмма развертывания.

Диаграмма прецедентов (use case diagram)

Любые (в том числе и программные) системы проектируются с учетом того, что в процессе свой работы они будут использоваться людьми и/или взаимодействовать с другими системами. Сущности, с которыми взаимодействует система в процессе своей работы, называются экторами, причем каждый эктор ожидает, что система будет вести себя строго определенным, предсказуемым образом.

Эктор (actor) - это множество логически связанных ролей, исполняемых при взаимодействии с прецедентами или сущностями (система, подсистема или класс). Эктором может быть человек или другая система, подсистема или класс, которые представляют нечто вне сущности.

Графически эктор изображается либо "человечком", либо символом класса с соответствующим стереотипом, как показано на рисунке 3.2. Обе формы представления имеют один и тот же смысл и могут использоваться в диаграммах. "Стереотипированная" форма чаще применяется для представления системных экторов или в случаях, когда эктор имеет свойства и их нужно отобразить. Дословный же перевод слова "эктор" - действующее лицо.


Рис. 3.2. – Изображение эктора

Прецедент (use-case) - описание отдельного аспекта поведения системы с точки зрения пользователя (Буч). Определение вполне понятное и исчерпывающее, но его можно еще немного уточнить, воспользовавшись тем же Zicom Mentor'ом:

Прецедент (use case) - описание множества последовательных событий (включая варианты), выполняемых системой, которые приводят к наблюдаемому эктором результату. Прецедент представляет поведение сущности, описывая взаимодействие между экторами и системой. Прецедент не показывает, "как" достигается некоторый результат, а только "что" именно выполняется. Прецеденты обозначаются очень простым образом - в виде эллипса, внутри которого указано его название. Прецеденты и экторы соединяются с помощью линий. Часто на одном из концов линии изображают стрелку, причем направлена она к тому, у кого запрашивают сервис, другими словами, чьими услугами пользуются. Это простое объяснение иллюстрирует понимание прецедентов как сервисов, пропагандируемое компанией IBM.

Прецеденты могут включать другие прецеденты, расширяться ими, наследоваться и т. д.

Пример диаграммы прецедентов на рис. 3.3.


Рис. 3.3 – Пример диаграммы прецендетов

 

Диаграммы прецедентов относятся к той группе диаграмм, которые представляют динамические или поведенческие аспекты системы. Это отличное средство для достижения взаимопонимания между разработчиками, экспертами и конечными пользователями продукта. Такие диаграммы очень просты для понимания и могут восприниматься и, обсуждаться людьми, не являющимися специалистами в области разработки ПО.

Можно выделить такие цели создания диаграмм прецедентов:

определение границы и контекста моделируемой предметной области на ранних этапах проектирования;

формирование общих требований к поведению проектируемой системы;

разработка концептуальной модели системы для ее последующей детализации;

подготовка документации для взаимодействия с заказчиками и пользователями системы.

Диаграмма классов (class diagram)

Класс (class) - категория вещей, которые имеют общие атрибуты и операции. Они представляют собой описание совокупности объектов с общими атрибутами, операциями, отношениями и семантикой. При проектировании объектно-ориентированных систем диаграммы классов обязательны. Классы используются в процессе анализа предметной области для составления словаря предметной области разрабатываемой системы. Это могут быть как абстрактные понятия предметной области, так и классы, на которые опирается разработка и которые описывают программные или аппаратные сущности.

Диаграмма классов - это набор статических, декларативных элементов модели. Диаграммы классов могут применяться и при прямом проектировании, то есть в процессе разработки новой системы, и при обратном проектировании - описании существующих и используемых систем. Информация с диаграммы классов напрямую отображается в исходный код приложения - в большинстве существующих инструментов UML-моделирования возможна кодогенерация для определенного языка программирования (обычно Java или C++). Таким образом, диаграмма классов - конечный результат проектирования и отправная точка процесса разработки.

Пример, представленный на рис. 3.4, весьма прост. Он, хоть и немного однобоко, иллюстрирует с помощью операции наследования или генерализации "генеалогическое древо" бытовой техники.


Рис. 3.4 – Диаграмма наследования класса «бытовая техника»

На рисунке 3.5 представлена диаграмма классов автоматизации учебной деятельности


Рис. 3.5 – Диаграмма классов автоматизации учебной деятельности.

 

Линиями указаны связи между классами (ассоциации), в конце линий указана кратность связей (* означает любое количество).

На рис. 3.6 представлена диаграмма классов, на которой кроме названий классов, приведены их атрибуты и операции.

 


Рис. 3.6

 

Диаграмма объектов (object diagram)

 

Объект - это экземпляр класса. Например, объектом класса "Микроволновая печь" из примера, приведенного выше, может быть и простейший прибор фирмы "Saturn" небольшой емкости и с механическим управлением, и навороченный агрегат с грилем, сенсорным управлением и системой трехмерного распределения энергии от Samsung или LG.

Еще пример - все мы являемся объектами класса "человек" и различимы между собой по таким признакам (значениям атрибутов), как имя, цвет волос, глаз, рост, вес, возраст и т. д..

Объект, как и класс, обозначается прямоугольником, но его имя подчеркивается. Под словом имя здесь понимается название объекта и наименование его класса, разделенные двоеточием. Во всем остальном они практически дублируют диаграммы классов.

Для чего нужны диаграммы объектов? Они показывают множество объектов - экземпляров классов (изображенных на диаграмме классов) и отношений между ними в некоторый момент времени. То есть диаграмма объектов - это своего рода снимок состояния системы в определенный момент времени, показывающий множество объектов, их состояния и отношения между ними в данный момент. Таким образом, диаграммы объектов представляют статический вид системы с точки зрения проектирования и процессов, являясь основой для сценариев, описываемых диаграммами взаимодействия. Говоря другими словами, диаграмма объектов используется для пояснения и детализации диаграмм взаимодействия, например, диаграмм последовательностей.

 

Диаграмма последовательностей (sequence diagram)

Диаграмма последовательностей отображает взаимодействие объектов в динамике. В UML взаимодействие объектов понимается как обмен информацией между ними. При этом информация принимает вид сообщений. Кроме того, что сообщение несет какую-то информацию, оно некоторым образом также влияет на получателя. Как видим, в этом плане UML полностью соответствует основным принципам ООП, в соответствии с которыми информационное взаимодействие между объектами сводится к отправке и приему сообщений.

Диаграмма последовательностей относится к диаграммам взаимодействия UML, описывающим поведенческие аспекты системы, но рассматривает взаимодействие объектов во времени. Другими словами, диаграмма последовательностей отображает временные особенности передачи и приема сообщений объектами.

Диаграммы последовательностей обычно содержат объекты, которые взаимодействуют в рамках сценария, сообщения, которыми они обмениваются, и возвращаемые результаты, связанные с сообщениями. Впрочем, часто возвращаемые результаты обозначают лишь в том случае, если это не очевидно из контекста.

Рассмотрим обозначения, которые используются на диаграмме последовательностей. Как и ранее, объекты обозначаются прямоугольниками с подчеркнутыми именами (чтобы отличить их от классов), сообщения (вызовы методов) - линиями со стрелками, возвращаемые результаты - пунктирными линиями со стрелками. Прямоугольники на вертикальных линиях под каждым из объектов показывают "время жизни" (фокус) объектов. Довольно часто их не изображают на диаграмме, все это зависит от индивидуального стиля проектирования. Пример диаграммы последовательностей приведен на рис. 3.7.


Рис. 3.7 – Пример диаграммы последовательностей

 

Смысл диаграммы рис. 3.7 следующий: студент хочет записаться на некий семинар, предлагаемый в рамках некоторого учебного курса. С этой целью проводится проверка подготовленности студента, для чего запрашивается список (история) семинаров курса, уже пройденных студентом (перейти к следующему семинару можно, лишь проработав материал предыдущих занятий). После получения истории семинаров объект класса "Семинар" получает статус подготовленности, на основе которой студенту сообщается результат (статус) его попытки записи на семинар.

Диаграмма взаимодействия (кооперации, collaboration diagram)

Диаграммы последовательностей - это средство документирования поведения системы, детализации логики сценариев использования; но есть еще один способ - использовать диаграммы взаимодействия. Диаграмма взаимодействия показывает поток сообщений между объектами системы и основные ассоциации между ними и по сути, как уже было сказано выше, является альтернативой диаграммы последовательностей. Диаграмма объектов показывает статику, некий снимок системы, связи между объектами в данный момент времени, диаграмма же взаимодействия, как и диаграмма последовательностей, показывает взаимодействие объектов во времени, т. е. в динамике.

Следует отметить, что использование диаграммы последовательностей или диаграммы взаимодействия - личный выбор каждого проектировщика и зависит от индивидуального стиля проектирования.

На диаграмме взаимодействия объекты обозначаются прямоугольниками с подчеркнутыми именами, ассоциации между объектами указываются в виде соединяющих их линий, над ними может быть изображена стрелка с указанием названия сообщения и его порядкового номера. Необходимость номера сообщения объясняется очень просто - в отличие от диаграммы последовательностей, время на диаграмме взаимодействия не показывается в виде отдельного измерения. Поэтому последовательность передачи сообщений можно указать только с помощью их нумерации. В этом и состоит вероятная причина пренебрежения этим видом диаграмм многими проектировщиками. Пример диаграммы взаимодействия приведен на рис. 3.8


Рис. 3.8 – Пример диаграммы взаимодействия.

 

Эта диаграмма описывает (очень грубо) работу персонала библиотеки по обслуживанию клиентов: библиотекарь получает заказ от клиента, поручает сотруднику найти информацию по нужной клиенту книге, а после получения данных поручает еще одному сотруднику выдать книгу клиенту.

Диаграмма состояний (statechart diagram)

Объекты характеризуются поведением и состоянием, в котором находятся. Например, человек может быть новорожденным, младенцем, ребенком, подростком или взрослым. Другими словами, объекты что-то делают и что-то "знают". Диаграммы состояний применяются для того, чтобы объяснить, каким образом работают сложные объекты.

Состояние (state) - ситуация в жизненном цикле объекта, во время которой он удовлетворяет некоторому условию, выполняет определенную деятельность или ожидает какого-то события. Состояние объекта определяется значениями некоторых его атрибутов и присутствием или отсутствием связей с другими объектами.

Диаграмма состояний показывает, как объект переходит из одного состояния в другое. Очевидно, что диаграммы состояний служат для моделирования динамических аспектов системы. Диаграмма состояний полезна при моделировании жизненного цикла объекта. От других диаграмм диаграмма состояний отличается тем, что описывает процесс изменения состояний только одного экземпляра определенного класса - одного объекта, причем объекта реактивного, то есть объекта, поведение которого характеризуется его реакцией на внешние события. Понятие жизненного цикла применимо как раз к реактивным объектам, настоящее состояние (и поведение) которых обусловлено их прошлым состоянием. Но диаграммы состояний важны не только для описания динамики отдельного объекта. Они могут использоваться для конструирования исполняемых систем путем прямого и обратного проектирования. И они действительно с успехом применяются в таком качестве, вспомним существующие варианты "исполняемого UML", такие как UNIMOD, FLORA и др.

Скругленные прямоугольники представляют состояния, через которые проходит объект в течение своего жизненного цикла. Стрелками показываются переходы между состояниями, которые вызваны выполнением методов описываемого диаграммой объекта. Существует также два вида псевдосостояний: начальное, в котором находится объект сразу после его создания (обозначается сплошным кружком), и конечное, которое объект не может покинуть, если перешел в него (обозначается кружком, обведенным окружностью). При переходах указывается условие, при котором переход выполняется и, возможно, через символ / может указываться выполняемое при переходе действие. Кроме того, деятельность может указываться и в самом состоянии. Эта деятельность может позразделяться на деятельность при входе (entry/), текущая деятельность (do/) и деятельность при выходе(exit/). На рисунке 3.9 приведена диаграмма состояний для таймера.


Рис. 3.9 – Диаграмма состояний для таймера

Диаграмма активности (деятельности, activity diagram)

В UML для изображения алгоритмов существуют диаграммы деятельности, являющиеся частным случаем диаграмм состояний. Диаграммы деятельности удобно применять для визуализации алгоритмов, по которым работают операции классов.

Обозначения на диаграмме активности напоминают обозначения блок-схем и диаграмм активности, хотя есть, как мы увидим далее, и некоторые существенные отличия. Пример диаграммы деятельности приведен на рис. 3.10.


Рис. 3.10 – Пример диаграммы деятельности

 

Ромбом изображено ветвление (условный оператор), прямоугольник со скругленными углами – действие. Широкой полосой изображено распараллеливание и потом соединение воедино процесса (человек поет, купаясь в душе).

 

Контрольные вопросы:

Какие основные формальные модели систем Вы знаете?

Что такое морфологическая модель и как она строится?

Что такое гиперкомплексная матрица?

Опишите основные виды структур систем.

Что такое функциональная модель?

Расскажите основы методики IDEF построения функциональных моделей.

Как выглядят основные компоненты информационной модели?

Методика создания информационных моделей?

Сформулируйте основные понятия объектно-ориентированного анализа.

Перечислите основные диаграммы UML и укажите особенности их построения.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 5978; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.051 сек.