Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фотоэлементы. Фотодиоды представляют собой полупроводниковые диоды, в которых используется внутренний фотоэффект




Фотодиоды

Фотодиоды представляют собой полупроводниковые диоды, в которых используется внутренний фотоэффект. Световой поток управляет обратным током фотодиодов. Под воздействием света на электронно-дырочный переход и прилегающие к нему области происходит генерация пар носителей заряда (нарисовать структуру), проводимость диода возрастает и обратный ток увеличивается. Такой режим работы называется фотодиодным (рис.4.3). Вольтамперные характеристики I=f(U) при Ф=const для фотодиодного режима (рис.4.4) напоминают выходные характеристики биполярного транзистора, включенного по схеме с общей базой. Если светового потока нет, то через фотодиод протекает обычный начальный обратный ток I0, который называют темновым. Под действием светового потока ток в диоде возрастает и характеристики располагаются выше. Чем больше световой поток, тем больше ток. Но при некотором напряжении возникает электрический пробой (участки резкого увеличения тока на характеристике). Энергетические характеристики фотодиода I=f(Ф) при U=const линейны и мало зависят от напряжения (рис.4.5).

 

 

Интегральная чувствительность фотодиода обычно составляет десятки мА на люмен. Она зависит от длины волны световых лучей и имеет максимум при некоторой длине волны, различной для разных полупроводников. Инерционность фотодиодов невелика. Они могут работать на частотах до нескольких сотен МГц. А у фотодиодов со структурой p-i-n граничные частоты повышаются до десятков ГГц. Рабочее напряжение у фотодиодов обычно 10-30 В. Темновой ток не превышает 20 мкА для германиевых приборов и 2 мкА – для кремниевых. Ток при освещении составляет сотни мкА. В последнее время разработаны фотодиоды на сложных полупроводниках, наиболее чувствительных к инфракрасному излучению. Большинство фотодиодов изготовляется по планарной технологии (рис.4.6).

Имеется несколько разновидностей фотодиодов. У лавинных фотодиодов происходит лавинное размножение носителей в p-n-переходе и за счет этого в десятки раз возрастает чувствительность. В фотодиодах с барьером Шотки имеется контакт полупроводника с металлом. Это диоды с повышенным быстродействием. Все фотодиоды могут работать и как генераторы ЭДС, о чем пойдет речь далее.

Полупроводниковые фотоэлементы, иначе называемые вентильными или фотогальваническими, служат для преобразования энергии излучения в электрическую энергию. По существу они представляют собой фотодиоды, работающие без источника внешнего напряжения и создающие собственную ЭДС под действием излучения.

Фотоны, воздействуя на p-n-переход и прилегающие к нему области, вызывают генерацию пар носителей заряда. Возникшие в p- и n-областях дырки и электроны диффундируют к переходу, и если они не успели рекомбинировать, то попадают под действие внутреннего электрического поля, имеющегося в переходе. Это поле также действует и на носителей заряда, возникших в самом переходе. Поле разделяет электроны и дырки. Для неосновных носителей, например для электронов, возникших в p-области, поле перехода является ускоряющим. Оно перебрасывает электроны в n-область. Аналогично дырки перебрасываются полем из n-области в p-область. А для основных носителей поле перехода является тормозящим, и эти носители остаются в своей области, т.е. дырки остаются в p-области, а электроны – в n-области (рис.4.7).

В результате такого процесса в n- и p-областях накапливаются избыточные основные носители, т.е. создаются соответственно заряды электронов и дырок и возникает разность потенциалов, которую называют фото-ЭДСф). С увеличением светового потока фото-ЭДС растет по нелинейному закону (рис.4.8). Значение ЭДС может достигать нескольких десятых долей вольта. При включении полупроводникового фотоэлемента на нагрузку (рис.4.9) возникает фототок Iфф/(Rн+Ri), где Ri – внутреннее сопротивление самого фотоэлемента.

 

 

В настоящее время наиболее широкое распространение получили кремниевые фотоэлементы, используемые в качестве солнечных преобразователей. Они преобразуют энергию солнечных лучей в электрическую, и ЭДС их достигает уже более 0,5В. Из таких элементов путем последовательного и параллельного соединения создаются солнечные батареи, которые обладают сравнительно высоким КПД (до 20%) и могут развивать мощность до нескольких кВт. Солнечные батареи из кремниевых фотоэлементов – это основные источники питания на искусственных спутниках Земли, космических кораблях, автоматических метеостанциях и др.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1868; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.