Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

История исследований нейронных сетей




Основы теории нейронных сетей были независимо разработаны А.Бэйном[1] (1873) и У.Джеймсом[2] (1890). В своих работах они рассматривают мыслительную деятельность как результат взаимодействия между нейронами в головном мозге.

Согласно Бэйну[1], любая деятельность ведёт к активизации определенного набора нейронов. При повторении той же деятельности связи между этими нейронами укрепляются. Согласно его теории, эти повторения ведут к формированию памяти. Научное сообщество того времени восприняло теорию Бэйна скептически, поскольку следствием её являлось возникновение чрезмерного количества нейронных связей в мозге. Теперь очевидно, что мозг является чрезвычайно сложной конструкцией и способен работать с несколькими задачами одновременно.

Теория Джеймса была схожа с теорией Бэйна[2], но в то же время Джеймс предположил, что формирование памяти происходит в результате прохождения электрических токов между нейронами в головном мозге, не требуя соединений нейронов для каждого акта запоминания или действия.

Британский физиолог Ч.Шеррингтон в 1898 провел эксперименты для проверки теории Джеймса.[3] Он пропускал электрический ток вдоль спинного мозга крыс. При этом вместо ожидаемого усиления тока, согласно теории Джеймса, Шеррингтон обнаружил, что электрический ток ослабевает с течением времени. Результаты экспериментов Шеррингтона сыграли важную роль в разработке теории привыкания.

В 1943 Мак-Каллок и Питтс разработали компьютерную модель нейронной сети[4] на основе математических алгоритмов. Они назвали эту модель «пороговой логикой». Модель Мак-Каллока — Питтса заложила основы двух различных подходов исследований нейронных сетей. Один подход был ориентирован на изучение биологических процессов в головном мозге, другой — на применение нейронных сетей для искусственного интеллекта.

В конце 1940-х канадский физиолог и психолог Дональд Хебб выдвинул гипотезу интерпретации обучения на основе механизма нейронной пластичности, известную кактеория Хебба. Теория Хебба считается типичным случаем самообучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу, без вмешательства со стороны экспериментатора. В более поздних вариантах теория Хебба легла в основу описания явления долговременной потенциации. Эти идеи с 1948 начали применяться для вычислительных моделей в B-машинах А.Тьюринга.

Фарли и Кларк в 1954 с использованием компьютеров разработали имитацию сети Хебба в Массачусетском технологическом институте.[5] Другие исследования нейронных сетей с помощью компьютерного моделирования были проведены в 1956 Рочестером, Холландом, Хебитом и Дуда.[6]

В 1957 Ф.Розенблатт разработал перцептрон[7] — математическую и компьютерную модель восприятия информации мозгом, на основе двухслойной обучающей компьютерной сети, использующей действия сложения и вычитания. В математической нотации Розенблатт описал также схему не только основного перцептрона, но и схему логического сложения, которая не могла быть реализована до разработки в 1975 Вербосом метода обратного распространения ошибки.[8]

Исследования нейронных сетей застопорились после публикации работы по машинному обучению Минского и Пейперта в 1969.[9] Они обнаружили две основные проблемы, связанные с вычислительными машинами, которые обрабатывают нейронные сети. Первая проблема состояла в том, что однослойные нейронные сети не могли совершать логическое сложение. Второй важной проблемой было то, что компьютеры не обладали достаточной вычислительной мощностью, чтобы эффективно обрабатывать огромный объём вычислений, необходимых для больших нейронных сетей. Исследования нейронных сетей замедлились до того времени, когда компьютеры достигли больших вычислительных мощностей. Одним из важных более поздних достижений было открытие метода обратного распространения ошибки, который позволил решить проблему с логическим сложением.[8]

Когнитрон, разработанный К.Фукусимой в 1975,[10] был одной из первых многослойных нейронных сетей с алгоритмом обучения. Фактическая структура сети и методы, используемые в когнитроне для задания относительных весов связей, варьировались от одной стратегии к другой, каждая из стратегий имела свои преимущества и недостатки. Сети могли распространять информацию только в одном направлении, или перебрасывать информацию из одного конца в другой, пока не активировались все узлы и сеть не приходила в конечное состояние. Достичь двусторонней передачи информации между нейронами/узлами удалось лишь в сети Хопфилда (1982), и специализация этих узлов для конкретных целей была введена в первых гибридных сетях.

Алгоритм параллельной распределенной обработки данных в середине 1980-х стал популярен под названием коннективизма. Работа Руммельхарта и Мак-Клелланда (1986)[11] полностью использует коннективизм для компьютерного моделирования нейронных процессов.

Распространение сетей, основанных на методе обратного распространения ошибки, вызвало большой энтузиазм в научном сообществе и породило многочисленные споры о том, может ли такое обучение быть реализовано в головном мозге, отчасти потому, что механизм обратного прохождения сигнала не был очевидным в то время, но главным образом потому, что не было явного источника «обучающего» или «целевого» сигнала. Тем не менее с 2006 было предложено несколько неконтролируемых процедур обучения нейронных сетей с одним или несколькими слоями с использованием так называемых алгоритмов глубокого обучения. Эти алгоритмы могут быть использованы для изучения промежуточных представлений, как с выходным сигналом, так и без него, чтобы понять основные особенности распределения сенсорных сигналов, поступающих на каждый слой нейронной сети.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1274; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.