Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Три наиболее типичные схемы включения транзистора




Схема с общим эмиттером

Схема включения транзистора.

 
 

Итак, мы поняли, из-за чего возникает коэффициент усиления по напряжению. Теперь рассмотрим это более подробно с учётом конкретных схем включения транзистора.

Обычно в схемах биполярные транзисторы изображаются так:

 
 

Как видно, схематическое изображение совсем не похоже на их действительную конструкцию. Но так принято. Кружок символизирует корпус транзистора. Индексом "б" обозначен контакт к базе, "к" обозначает контакт к коллекторной области, а "э" – к эмиттерной области. Направление стрелки у эмиттерного контакта определяет тип транзистора (п-р-п или р-п-р).

Входом усилительного каскада является эмиттерный р-п переход, т.е. контакты б-э. При нормальном смещении это прямое напряжение для эмиттерного р-п перехода, т.е. вольтамперная характеристика (ВАХ) выглядит так:

 
 

Если транзистор открыт, то напряжение на р-п переходе примерно равно 0,6 В. Если оно меньше на 0,1 В, то ток падает.

Подсчитаем, во сколько раз падает ток, если напряжение уменьшается на 0,1 В. Вспомним, что кТ/q=0.026 В, поэтому изменение тока можно приближённо подсчитать по формуле:

 
 

 

Т.е. ток упадёт примерно в 50 раз, и можно будет считать, что через транзистор ток не протекает.

Теперь рассмотрим выходные характеристики п-р-п транзистора, т.е. ВАХ на коллекторе. Сначала будем считать, что транзистор включён по схеме с общей базой:

 

 
 

Мы видим, что к эмиттерному р-п переходу приложено прямое смещение: плюс к базовому контакту, а минус к эмиттерному контакту. К коллекторному р-п переходу приложено обратное смещение. В этом случае у хорошего транзистора коллекторный ток лишь незначительно меньше эмиттерного. Значит, вольтамперные характеристики должны быть горизонтальными:

 
 

Это левый рисунок. Здесь представлены четыре линии для четырёх токов эмиттера. На самом деле они выглядят немного не так – см. правый рисунок. Во-первых при отрицательном напряжении (а это будет прямое смещение для коллекторного р-п перехода) ток быстро падает. А при положительном напряжении токи коллектора всё-таки немного нарастают, что происходит из-за того, что с ростом напряжения увеличивается обратное смещение на коллекторном р-п переходе, при этом увеличивается его область объёмного заряда, а значит уменьшается нейтральная часть базы. Это и приводит к тому, что полный коллекторный ток постепенно нарастает. В конце наступает резкий рост тока, связанный с пробоем коллекторного р-п перехода.

 

Чаще используется схема с общим эмиттером. В этом случае кривые немного сдвигаются вправо:

 

 
 

В этом случае в базу и в эмиттер подаются напряжения одного знака, но в базу подаётся не больше 0,7 В, а в коллектор – 5...15 В.

Если в коллекторную цепи включить резистор, то напряжение будет уменьшаться при больших токах, и может достичь нуля. В этом случае наступит режим насыщения: напряжение на коллекторном переходе станет прямым, ток пойдёт из коллектора в базу и из эмиттера в базу, ток в коллекторной цепи прекратится, а в базе начнётся накопление электронов. Это так называемый режим насыщения.

Режим насыщения очень неприятен, так как из-за этого накопления носителей в базе резко ухудшается быстродействие транзистора.

В схеме с общей базой этого не происходит.

Отметим также, что нарастание тока коллектора с ростом напряжения на коллекторе можно охарактеризовать величиной дифференциального сопротивления коллектора:

 
 

Дифференциальное коллекторное сопротивление у схемы с общим эмиттером (ОЭ) во много раз меньше, чем у схемы с общей базой (ОБ).

 

Теперь рассмотрим более подробно три наиболее типичные схемы включения транзистора: с общим эмиттером (ОЭ), с общим коллектором (ОК) и с общей базой (ОБ). Общим называется тот контакт, который либо прямо связан с землёй, либо через низкое сопротивление источника питания. А на остальных контактах будут входной и выходной сигнал.

 
 

В схеме ОЭ входной сигнал подаётся на базу, а выходной сигнал снимается с коллектора. Схема и выходные характеристики изображены на рис.:

Видно, что схема стала очень сложной. Однако главное, что здесь есть – это резистор Rк, который определяет коэффициент усиления по напряжению, и который составляет от единиц килом до мегома (чем больше этот резистор, тем больше усиление). Все остальные элементы более или менее условны.

Прежде всего Rэ необходимо для термостабилизации транзистора. Это осуществляется за счёт обратной связи по постоянному току, которую мы обсудим позже. Сэ – конденсатор, который шунтирует этот резистор на рабочих частотах, так что при переменном сигнале резистора нет. Этот конденсатор – несколько мкФ. Обычно это электролитический конденсатор.

Ср – разделительные конденсаторы, которые отделяют постоянную составляющую сигнала на входе и выходе схемы от внешних сигналов. Обычно это несколько мкФ.

Rб1 – важный резистор, управляющий работой транзистора, служит для задания рабочей точки. Этот резистор задаёт постоянную составляющую тока базы. Его значение зависит от величины Rк.

Rб2 – практически ненужный резистор, просто он ставится для предохранения транзистора от сгорания. Его значение должно быть большим, так как стоит он параллельно входу и может его закоротить. Обычно это 1 или несколько килом, так как входное сопротивление транзистора мало.

Rн – сопротивление нагрузки, лучше, если оно большое, так как оно подключено параллельно выходу транзистора, и если оно будет малым, выходной сигнал упадёт.

Uвх – сигнал на входе транзистора. Как видно, на входе много различных деталей – резисторов и конденсаторов. Но на рабочих частотах сопротивления конденсаторов малы, и они хорошо пропускают сигналы. А два параллельных резистора Rб1 и Rб2 достаточно велики по сравнению с входным сопротивлением транзистора. Поэтому учтём только это входное сопротивление.

Обычно собственно сопротивления транзистора обозначаются малыми буквами:

rб – сопротивление базовой области транзистора, обычно очень мало – от нескольких Ом до десятков Ом;

rэ – сопротивление эмиттерной области (десятые или сотые доли Ом) и эмиттерного р-п перехода, обычно смещённого в прямом направлении. При открытом транзисторе это в пределах 10...100 Ом.

 
 

Оценим сопротивление rэ из формулы для ВАХ р-п перехода при прямом смещении:

 

(как обычно, при прямом смещении единицей пренебрегаем). Будем оценивать дифференциальную величину rэ. Продифференцируем формулу по U:

 
 

или

Видно, что сопротивление р-п перехода зависит только от тока, который через него протекает. Так при токе в 1 мА при комнатной температуре (примерно 3000К) получается 0,026В/10-3 = 26 Ом, а при 10 мА получится 2,6 Ом.

Но сопротивление базы как входное сопротивление транзистора определяется сложнее. Дело в том, что ток базы должен увеличиться в +1 раз (это отношение Iэ/Iб). Поэтому и напряжение, упавшее на эмиттерном р-п переходе, увеличится в это же число раз:

 
 

Итак, входное сопротивление транзистора будет сильно зависеть от , rб и rэ, а также от тока, протекающего через эмиттер. Но это величина не очень большая: если считать, что а ток равен 1 мА, то это примерно 2,6 кОм, при токе 10 мА – это 260 Ом, при большем токе уже надо добавлять сопротивление базы.

На вход подаётся напряжение Uвх. Ток, протекающий через базу транзистора, равен:

 
 

Через коллектор протекает ток Iк = Iб. Вычислим потенциал на коллекторе. Теперь найдём коэффициент усиления по напряжению Кu=Uвых/Uвх, но так как это затруднительно, будем искать дифференциальный коэффициент усиления:

Видно, что коэффициент усиления по напряжению отрицательный, т.е. выходной сигнал в противофазе с входным, и довольно велик, так как Rk >> rвх и >10.

Интересно также провести графическое исследование схемы. Это позволяет сделать правый рис., где показано семейство выходных ВАХ.

 
 

Предположим, что мы решили найти коллекторное напряжение с помощью графического метода. Для простоты считаем, что Rэ = 0 Rн = бескон. Очевидно:

Справа стоит функция Uк(Iк), семейство этих функция имеется у нас на графике. Слева тоже какая-то функция от Iк. Но это прямая, так называемая нагрузочная прямая. Она определяется напряжением питания и сопротивлением коллектора. Две точки, через которые проходит эта прямая, это:

 

Iк Uк
  Eп
Eк/Rк  

 

Нагрузочная прямая тоже изображена на рис. Её пересечение с одной из кривых семейства – это и есть графическое решение нашей задачи. И это решение более правильное, чем наше предыдущее, так как оно учитывает настоящие графики транзистора.

Пусть входные токи таковы, что работают первая и третья кривые семейства......

 
 

Теперь рассмотрим другую схему включения транзистора:

Здесь на входе транзистора всё точно также, как и в предыдущей схеме. А в коллекторе и эмиттере всё не так! Коллектор соединён прямо с источником питания, выходное напряжение берётся с резистора эмиттера.

Во первых, это сильно сказывается на входном сопротивлении схемы:

 
 

Если входное сопротивление равно 3 кОм, а =300, то по формуле получается примерно 1 МОм, т.е. очень много.

 
 

Почему так получается? Из-за обратной связи. Дело в том, что на транзистор действует разность потенциалов между базой и эмиттером: чем больше эта разность, тем больше ток через эмиттерный р-п переход, тем больше падение напряжения на резисторе Rэ , но тем меньше разность потенциалов на эмиттерном р-п переходе. Обратная связь – 100-процентная. Можем вычислить дифференциальный коэффициент усиления путём дифференцирования соответствующих уравнений. Получим:

Если rэ = 30 Ом, а Rэ = 3 кОм, то Кuд =1/(1+30/3000)=0,99. Видно, что Кuд меньше 1, но очень близко к ней.

Выходное сопротивление сильно уменьшается по сравнению с Rэ.

Кажется, такое устройство не очень то требуется, так как коэффициент усиления меньше 1. Но тот факт, что у схемы с ОЭ как раз плохие параметры из-за того, что у ОЭ низкое входное сопротивление и высокое выходное, не получается использовать несколько схем с ОЭ, так как каждая следующая схема будет закорачивать выходной сигнал предыдущей. Если же между схемами с ОЭ использовать схемы с ОК, то высокое выходное сопротивление ОЭ согласуется с очень высоким входным сопротивлением схемы ОК, а низкое выходное сопротивление схемы ОК согласуется с не очень низким входным сопротивлением следующей схемы ОЭ.

Это происходит потому, что при единичном усилении по напряжению схема с ОК имеет довольно большой коэффициент усиления по току (примерно . Часто такие схемы называются эмиттерными повторителями.

Существуют ещё и схемы с общей базой. Они используются довольно редко, поэтому мы их не рассматриваем.

Ниже мы приводим таблицу сравнительных данных по этим схемам.

 

  rвх rвых Ku Ki Kp Замечания
ОЭ среднее высокое Большое Большое Очень большое Часто использ.
ОК очень большое очень низкое   Большое Большое Не часто использ.
ОБ малое очень высокое Большое   Большое Редко использ.

/ 8.1(6), 8.1(7), 8.2(2), 8.2(4) /

Контрольные вопросы

1. Принцип действия биполярного транзистора.

2. Составляющие токов в биполярном транзисторе n-p-n типа.

3. Работа дрейфового тока, тока рекомбинации и дырочного тока диффузии.

4. Из-за чего возникает коэффициент усиления по напряжению?

5. Три наиболее типичные схемы включения транзистора.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1087; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.037 сек.