Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расчет вала сошки




Рулевое управление служит для изменения и сохранения выбранного водителем направления движения автомобиля. Основным способом изменения направления движения является поворот в горизонтальной плоскости передних направляющих колес относительно задних колес. Рулевое управление должно обес­печивать правильную кинематику по­ворота и безопасность движения,

небольшие усилия на рулевом колесе, предотвращать передачу толчков от неровностей дороги на рулевое ко­лесо.

Рулевой привод. Для передачи усилия от рулевого механизма к управляемым колесам и для правиль­ного взаимного расположения ко­лес при повороте служит рулевой привод. Рулевые привода бывают с цельной трапецией (при зависимой подвеске колес) и с расчлененной трапецией (при независимой подвес­ке). Кроме того, рулевая трапеция может быть задней или передней, т. е. с поперечной тягой, располо­женной сзади передней балки или перед ней.

Рулевая сошка 5 может ка­чаться по дуге окружности, распо­ложенной в плоскости, параллель­ной продольной оси автомобиля, или в плоскости, параллельной балке пе­реднего моста. В последнем случае продольная тяга (см. рис. 16.2, б) отсутствует, а усилие от сошки 5 передается через среднюю тягу 8 и две боковые 13 рулевые тяги пово­ротным цапфам. Сошка крепится к валу на конусных шлицах при по­мощи гайки на всех автомобилях. Для правильной установки сошки при сборке на валу и сошке делают специальные метки. В нижнем конце рулевой сошки, имеющем конусное отверстие, закреплен палец с попе­речной тягой 8.

 

Расчет балки моста (прямолинейное движение автомобиля)

Мосты автомобиля рассчитывают на прочность по сцеплению колес автомобиля с дорогой при максимальном значении коэффициента сцепления. Расчет выполняют для различных режимов движения автомобиля. При расчете значения сил и моментов, действующих на мосты при движении автомобиля, принимаются максимальными.

Ведущий мост. Балку ведущего моста рассчитывают для трех нагрузочных режимов: прямолинейное движение автомобиля, занос автомобиля и переезд автомобиля через препятствие.

При прямолинейном движении автомобиля балка ведущего моста (см.рис.) изгибается в вертикальной плоскости под воздействием нормальных реакций дороги и на ведущие колеса.

Изгибающий момент в вертикальной плоскости где – плечо изгиба.

 

 

Нормальные реакции дороги от нагрузки на ведущий мост равны:

 

 

где – коэффициент перераспределения нагрузки на задний мост.

Кроме того, под действием тяговой силы балка ведущего моста испытывает статическую нагрузку и изгибается также в горизонтальной плоскости. Изгибающий момент в горизонтальной плоскости Тяговые силы на ведущих колесах равны: - коэф сцепл колес с дорогой.

Кроме изгибающих моментов на балку ведущего моста действует крутящий момент

 

 

где – радиус ведущих колес.

В балке ведущего моста наиболее опасными местами являются обычно сечения под площадками для крепления пружин (рессор).

Суммарный результ-й момент от изгиба и круч-я в опасном сеч-и балки моста

 

 

Результ-е напряжения от изгиба и кручения для трубчатого круглого сечения

 

 

где – момент сопротивления трубчатого сечения.

Расчет балки ведущего моста на прочность (режим – динамические нагрузки)

При динамическом нагружении изгибающий момент в вертикальной плоскости:

 

Mи = Rz1Кдl,

 

где Кд= 1,5...3 — коэффициент динамичности.

Напряжение изгиба уи= Mи /W.

Для балок мостов, литых из стали и чугуна, [фи]= 300 МПа, для штампованных из стального листа [фи]= 500 МПа.

Определение нагрузок и расчет переднего моста производят так же, как и заднего моста. При торможении коэффициент перераспределения нагрузки на передний мост m1=1,1...1,2. Необходимо учитывать переменное сечение балки: двутавровое в средней части и после рессорной площадки постепенно переходящее в круглое. Вертикальные реакции Rz1=Rz2= m1G1/2, где G1— нагрузка на передние колеса.

Для балки управляемого моста жесткость важна для сохранения углов установки колес. Жесткость ведущего моста влияет на условия зацепления зубчатых передач, на нагрузку подшипников и на нагруженность полуосей.

Прогиб балки равен силе в заданном сечении, отнесенной к жесткости сечения i=Ри/(ЕJx). Балка нагружена в местах крепления рессор.

Переменное сечение балки затрудняет расчет. В таких случаях или упрощают схему и ведут расчет по наиболее опасному сечению, или усложняют расчет, применяя метод конечных элементов.

Прогиб балки грузовых автомобилей достигает 2...3 мм

Расчет балки ведущего моста на прочность (нагрузочный режим – боковой занос автомобиля)

При заносе балку моста рассчитывают на изгиб в вертикальной плоскости, считая при этом Pт1=Pт2=0.

Изгибающие моменты в вертикальной плоскости

, — боковые реакции при заносе;

,

где и — нормальные реакции опорной поверхности при заносе. Условно принимается .

Эпюры моментов от и строят раздельно, а затем складывают. Опасное сечение картера находится в месте крепления рессоры: здесь напряжение изгиба:

,

 

11 Продольная рулевая тяга. Продольную (прямолинейную) ру­левую тягу рассчитывают на растяжение, сжатие и продольный изгиб (рис. 158, г).

Критическое напряжение при продольном изгибе для прямо­линейной оси тяги и шарнирных опор

Минимальный момент инерции поперечного сечения

Площадь поперечного сечения (кольцевого)

Запас по устойчивости где

— напряжение сжатия рулевой тяги.

При наличии в рулевом управлении усилителя в зависимости от места расположения гидроцилиндра и конструкции продоль­ных рулевых тяг в расчет вносятся следующие изменения:

1) при усилителе, объединенном с рулевым механизмом, к усилию Рр.с добавляется усилие от силового цилиндра гидроуси­лителя;

2) при компоновке, когда функцию продольной тяги выпол­няет шток гидроцилиндра, расчетное усилие равно усилию, раз­виваемому гидроцилиндром;

3) при компоновке, когда гидроцилиндр вынесен на передний мост, расчет продольной тяги не отличается от рачета, рассмот­ренного выше. В продольной рулевой тяге рассчитываются пру­жины. При передаче усилия Рр.с эти пружины сжимаются на определенную высоту (дальнейшее сжатие ограничено). Напря­жения кручения в пружинах достигают 1000... 1200 МПа.

 




Поделиться с друзьями:


Дата добавления: 2015-06-29; Просмотров: 1100; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.