Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Неопределенный интеграл




ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ

 

 

Пример 1. Найти интеграл .

Решение. Поделив каждое слагаемое числителя подынтегральной дроби на знаменатель, и используя, что интеграл от суммы функций равен сумме интегралов от этих функций, получим:

.

Первый интеграл является табличным: .

Во втором интеграле воспользуемся тем, что .

Получим следующую запись .

Если представить, что arcsin x=t, то данный интеграл будет интегралом от степени , но явно переходить к переменной t нет необходимости.

.

Таким образом, для заданного интеграла имеем:

.

 

Пример 2. Найти интеграл .

Решение. Как и в примере 1, вычислим дифференциал .

Числитель подынтегральной дроби преобразуем тождественно к виду, содержащему .

Исходя из преобразований, сделанных выше, получаем:

.

Разделив почленно подынтегральную функцию, получим:

Первый интеграл это интеграл вида :

.

Для того чтобы вычислить второй интеграл, выделим полный квадрат из выражения ():

Второй интеграл теперь будет иметь следующий вид:

.

С учетом того, что , этот интеграл табличный.

.

Таким образом, для заданного интеграла имеем:

.

 

Пример 3. Найти интеграл .

Решение. Воспользуемся формулой интегрирования по частям:

.

В выражении, стоящем под знаком интеграла, обозначим: , а .

По данным и , для составления правой части формулы, вычисляем и :

, .

Составляем правую часть формулы интегрирования по частям, записывая вместо их выражения.

.

Пример 4. Найти интеграл .

Решение. Отделим от нечетной степени один множитель: .

Если положить , то . Перейдем в интеграле к новой переменной t:

Возвратившись к прежней переменной, получаем: .

 

Пример 5. Найти интеграл .

Решение. Понизим у и степень с помощью следующих формул: .

Тогда в исходном интеграле получим следующее:

Первый интеграл является табличным: , а во втором интеграле применим формулу понижения степени. Тогда искомый интеграл преобразуется к виду:

.

 

Пример 6. Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

.

Применив универсальную тригонометрическую замену:

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.

 

Пример 7. Найти интеграл .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х 2 1 0 и получим систему трех уравнений с тремя неизвестными:

Решив эту систему, получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:

Пример 8. Найти интеграл .

Решение. Для того чтобы избавиться от иррациональности в подынтегральном выражении, нужно сделать следующую замену:

Тогда данный интеграл запишем в виде:

.

Подынтегральное выражение представляет собой неправильную дробь, в которой нужно выделить целую часть путем деления многочлен на многочлен: .

Возвращаясь к интегралу, получим:

 




Поделиться с друзьями:


Дата добавления: 2015-06-30; Просмотров: 342; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.