Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Для соседнего резервуара




Для горящего резервуара

Для соседнего резервуара

Для горящего резервуара

(6.1)

где — интенсивность подачи воды на охлаждение горящего резервуара. л/(м2 с) (см. табл. 2.10); Рр—периметр резервуара (длина окружности), м.

(6.2)

где — интенсивность подачи воды на охлаждение соседнего резервуара, л/(м2 с) (см. табл. 2.10).

ТАБЛИЦА 6.14. РАЗМЕРЫ ЦИЛИНДРИЧЕСКИХ ВЕРТИКАЛЬНЫХ СТАЛЬНЫХ РЕЗЕРВУАРОВ ДЛЯ ХРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ

Объем резервуара, м3 Диаметр, м Высота, м Площадь, м2
  4,01 4,16  
  4,68 4,16  
  4,74 5,91  
  5,68 4,14  
  6,63 6,92  
  7,11 5,51  
  7,59 7,37  
  8,53 5,51  
  8,53 7,39  
  9,26 7,44  
  9,86 8,26  
  10,44 8,34  
  11,38 8,87  
  11,38 9,70  
  12,33 8,94  
  14,62 11,92  
  15,22 11,26  
  17,90 11,92  
  22,80 11,92  
  34,20 11,92  
  45,60 17,92  
  45,60 17,88  
  60,70 17,88  

В практически ориентировочных расчетах число водяных ство­лов для охлаждения резервуаров рассчитывают по формулам:

; (6.3)

,(6.4)

где D — диаметр резервуара, м.

В итоге расчетное число стволов необходимо скорректировать с условиями осуществления боевых действий и принять для охлаж­дения горящего резервуара не менее трех стволов А (если по расче­ту меньше), а для соседнего — не менее двух. Это объясняется тем, что одним стволом практически невозможно обеспечить равномер­ное и непрерывное охлаждение полупериметра резервуара в течение длительного периода.

Число стволов на охлаждение дыхательной и другой арматуры подземных железобетонных резервуаров определяют по норматив­ным расходам воды, указанным в табл. 2.10, или по тактическим условиям обстановки на пожаре. Следует иметь в виду, что охлаждению подлежит арматура только на соседних резервуарах и расход воды принимается общий на суммарную емкость горящего резерву­ара и соседних с ним.

При расчетах необходимо предусматривать также четыре — шесть стволов А в резерве по условиям техники безопасности для защиты личного состава, работающего в обваловании, рукав­ных линий и технического вооружения, оказавшихся в зоне разли­ва вскипевшего нефтепродукта. На пожарах в подземных резерву­арах эти стволы можно использовать для защиты личного состава в период подачи пеногенераторов или пеносливов на исходные по­зиции тушения.

Исходя из сказанного, общее число стволов на охлаждение опре­деляют по формуле

. (6.5)

Основным средством тушения пожаров нефти и нефтепродуктов в резервуарах является воздушно-механическая пена средней крат­ности (кратность 80—150) на основе пенообразователя ПО-1 и дру­гих (см. гл. 2), кроме этилового спирта, который тушится пеной средней кратности на основе пенообразователя ПО-1С с предвари­тельным разбавлением жидкости в резервуаре водой до концентра­ции 70 %. Расчетную концентрацию ПО-1С в водном растворе при­нимают не менее 10%, а интенсивность его подачи — 0,35 л/(м2 с).

Горение спирта можно ликвидировать огнетушащими порошко­выми составами (ОПС) с интенсивностью их подачи 0,3 кг/(м2 с), а также водой путем разбавления жидкости в емкости до концент­рации 28 % и ниже. Подобное тушение применимо при опорожнении горящего резервуара не менее чем на 2/3 его высоты.

Вода для разбавления спирта в резервуаре подается навесны­ми струями из ручных или лафетных стволов, через генераторы пены средней кратности, установленные на пеноподъемниках в ходе под­готовки к пенной атаке, а также с помощью сифонов, изготовлен­ных из труб на месте пожара. Сифон приводится в действие путем наполнения его водой от насоса пожарной машины с последующим отводом спирта в подготовленные емкости. Время предварительного разбавления спирта водой до концентрации 70 % приведено в табл. 6.9.

Подача пены средней кратности на тушение пожара в наземном резервуаре осуществляется с помощью переносных пеноподъемни­ков, оборудованных гребенкой на два ГПС-600 и механизированных пеноподъемников с гребенками для подсоединения требуемого коли­чества ГПС-600 или ГПС-200 (см. гл. 3). Необходимое число перено­сных пеноподъемников, оборудованных гребенками на два ГПС-600, определяют по формуле

(6.6)

Схема подачи генераторов и водяных стволов зависит от харак­теристики пожарного насоса, пеносмесителя или другого дозирую­щего устройства. На современных пожарных автомобилях устанав­ливают пеносмесители, которые обеспечивают работу четырех—пяти ГПС-600. Оптимальным вариантом подачи воды на охлаждение ре­зервуаров является схема на четыре ствола А, подключенных к ли­ниям через двухходовые или другие разветвления. Тогда пожарных машин для тушения пожара в наземных и подземных резервуарах без резерва потребуется:




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 675; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.