Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Влияние различных факторов на пластичность металла




Лекция 9. Влияние различных факторов на пластичность металла. Влияние ОМД на структуру и свойства металлов. Основные законы теории пластических деформаций. Нагрев заготовок при ОМД.

 

1.1. Влияние химического состава

Чистые металлы обладают более высокой пластичностью, чем их сплавы. Например, медь пластичнее ее сплава с оловом (бронзы). Сплавы, образующие твердые растворы, обычно более пластичны, чем сплавы, образующие химические соединения и механические смеси. Большей пластичностью обладают металлы, у которых больше разница между пределами прочности и текучести.

Компоненты сплава также влияют на его пластичность. С повышением содержания углерода в стали пластичность уменьшается. При содержании углерода свыше 1,5% сталь с трудом поддается ковке.

Кремний понижает пластичность стали.Поэтому кипящая малоуглеродистая сталь (08кп, 10кп) с малым содержанием кремния применяется при изготовлении деталей холодной штамповкой глубокой вытяжкой.

В легированных сталях хром и вольфрам уменьшают, а никель и ванадий повышают пластичность стали.

Сера, соединяясь с железом, образует сульфид железа , который в виде эвтектики располагается по границам зерен и при нагревании до 1000о расплавляется. В результате связь между зернами нарушается и сталь становится хрупкой. Такое явление называется красноломкостью.

Марганец, образуя тугоплавкое соединение , нейтрализует вредное действие серы.

Фосфор увеличивает пределы прочности и текучести, но уменьшает, особенно при низких температурах, пластичность и вязкость сталей, вызывая их хладноломкость.

Пластичность литого крупнозернистого металла ниже, чем деформированного, имеющего мелкозернистую структуру. Снижают пластичность поры, газовые пузыри, неметаллические включения, микро- и макротрещины.

 

1.2. Влияние температуры

Качественная зависимость пластичности от температуры представлена на рис.

Влияние температуры неоднозначно. Малоуглеродистые и среднеуглеродистые стали, с повышением температуры, становятся более пластичными (1). Высоколегированные стали имеют большую пластичность в холодном состоянии (2). Для шарикоподшипниковых сталей пластичность практически

Рис. Влияние температуры на пластичность сталей

 

не зависит от температуры (3). Отдельные сплавы могут иметь интервал повышенной пластичности (4). Техническое железо в интервале 800…1000 0С характеризуется понижением пластических свойств (5). При температурах, близких к температуре плавления пластичность резко снижается из-за возможного перегрева и пережога.

Для углеродистых сталей в интервале температур 100–300оС, называемом зоной синеломкости, пластичность несколько уменьшается, а прочность возрастает. Это явление объясняется выпадением мельчайших частиц карбидов по плоскостям скольжения при деформации. Пластичность также несколько снижается в области фазовых превращений.

Резкое снижение пластичности при высоких температурах связано с чрезмерным ростом зерен. Это явление называется перегревом. Структуру перегретой стали в большинстве случаев можно исправить отжигом. При нагреве стали до температуры, близкой к температуре плавления, происходит образование оксидов по границам зерен и расплавление легкоплавких межзеренных прослоек, что приводит к появлению трещин и потере пластичности. Это явление называется пережогом. Оно не устраняется термической обработкой, и пережженный металл отправляется на переплавку.

 

1.3. Влияние скорости деформации

 

Скорость деформации – это изменение степени деформации в единицу времени . В общем случае с увеличением скорости деформации пластичность падает. Особенно резко уменьшается пластичность некоторых высоколегированных сталей, магниевых и медных сплавов. Это можно объяснить при обработке нагретого металла влиянием двух противоположных процессов: упрочнения при деформации и разупрочнения вследствие рекристаллизации. При больших скоростях деформации разупрочнение может отставать от упрочнения. Однако при очень больших скоростях деформации пластичность металла вновь возрастает (штамповка взрывом, на высокоскоростных молотах). Это объясняется тем, что теплота, в которую переходит работа деформации, не успевает рассеяться и приводит к разогреву деформируемого металла, и как следствие, к повышению пластичности.

 

1.4. Влияние напряженного состояния

 

Напряженное состояние характеризуется схемой главных напряжений, действующих в элементарно малом объеме, выделенном в деформируемом теле.

Главными называют нормальные напряжения, действующие в трех взаимноперпендикулярных площадках, на которых касательные напряжения равны нулю. Всего имеется девять схем главных напряжений: четыре объемные, три плоские и две линейные. При обработке металлов давлением встречаются две объемные схемы напряженного состояния:

 

1) объемное трехосное сжатие металла, когда по всем трем осям действуют главные напряжения сжатия. Эта схема наблюдается при свободной ковке, объемной штамповке, прокатке, прессовании.

2) объемное напряженное состояние металла, когда по двум осям действуют главные напряжения сжатия, а по третьей – главное напряжение растяжения. Эта схема наблюдается при волочении и в некоторых случаях листовой штамповки.

Схема главных напряжений позволяет судить о пластичности металла. Чем большую роль играют напряжения сжатия, тем выше пластичность металла в процессе его обработки. Поэтому, например, пластичность металла при прессовании выше, чем при волочении. Повысить сжимающие напряжения при обработке давлением можно, например, оказывая боковое давление на металл жесткими стенками инструмента.

Деформированное состояние в элементарно малом объеме металла характеризуется схемой главных деформаций. Главными называются деформации в направлении трех осей, перпендикулярных к площадкам, в которых касательные напряжения отсутствуют. При обработке давлением различают три схемы главных деформаций:

 

1) по двум осям – главные деформации сжатия, по третьей – главная деформация растяжения. Эта схема наблюдается при волочении и прессованию.

2) по одной оси – главная деформация сжатия, а по двум другим – главные деформации растяжения. Эта схема наблюдается при прокатке узкой полосы на гладкой бочке, при прокатке в калибрах, при свободной ковке и объемной штамповке.

3) по одной оси – главная деформация сжатия, по второй – главная деформация растяжения, а по третьей деформации не происходит. Эта схема наблюдается при прокатке широкой полосы на гладких валках, в некоторых случаях листовой штамповки.

Схема главных деформаций дает представление о характере формирования волокна и зерен. Максимальная главная деформация определяет текстуру деформации, предопределяет физико-механические свойства металла при обработке давлением.

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 578; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.049 сек.