Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вычислительная техника (период с 1940 года по настоящее время)




• Каким образом можно создать эффективный компьютер?

Для успешного создания искусственного интеллекта требуется, во-первых, интеллект и, во-вторых, артефакт. Наиболее предпочтительным артефактом в этой области всегда был компьютер. Современный цифровой электронный компьютер был изобретен независимо и почти одновременно учеными трех стран, участвующих во Второй мировой войне. Первым операционным компьютером было электромеханическое устройство Heat Robinson (Хет Робинсон, в честь которого названо это устройство, был карикатуристом, знаменитым тем, что изображал причудливые и абсурдно усложненные картины таких повседневных действий, как намазывание тостов маслом), созданное в 1940 году группой Алана Тьюринга для единственной цели — расшифровки сообщений, передаваемых немецкими войсками. В 1943 году та же группа разработала мощный компьютер общего назначения, получивший название Со1оssus, в конструкции которого применялись электронные лампы (в послевоенный период Тьюринг высказал пожелание применить эти компьютеры для исследований в области искусственного интеллекта, например для разработки одной из первых шахматных программ, но его усилия были заблокированы британским правительством).

Первым операционным программируемым компьютером был компьютер Z-3, изобретенный Конрадом Цузе в Германии в 1941 году. Цузе изобрел также числа с плавающей запятой и создал первый язык программирования высокого уровня. Первый электронный компьютер, АВС, был собран Джоном Атанасовым и его студентом Клиффордом Берри в период с 1940 по 1942 год в университете штата Айова. Исследования Атанасова почти не получили поддержки или признания; как оказалось, наибольшее влияние на развитие современных компьютеров оказал компьютер ЕNIAC, разработанный в составе секретного военного проекта в Пенсильванском университете группой специалистов, в состав которой входили Джон Мочли и Джон Экерт. За прошедшее с тех пор полстолетия появилось несколько поколений компьютерного аппаратного обеспечения, причем каждое из них характеризовалось увеличением скорости и производительности, а также снижением цены. Производительность компьютеров, созданных на основе кремниевых микросхем, удваивается примерно через каждые 18 месяцев, и такая скорость роста наблюдается уже в течение двух десятилетий. После достижения пределов этого роста потребуется молекулярная инженерия или какая-то другая, новая технология.

Безусловно, вычислительные устройства существовали и до появления электронного компьютера. Первым программируемым устройством был ткацкий станок, изобретенный в 1805 году Жозефом Марией Жаккардом (1752— 1834), в котором использовались перфокарты для хранения инструкций по плетению узоров ткани. В середине ХIХ столетия Чарльз Бэббидж (1792—1871) разработал две машины, но ни одну из них не успел закончить. Его “разностная машина” предназначалась для вычисления математических таблиц, используемых в инженерных и научных проектах. В дальнейшем эта машина была построена и ее работа продемонстрирована в 1991 году в лондонском Музее науки.

Другой замысел Бэббиджа, проект “аналитической машины”, был гораздо более амбициозным: в этой машине предусмотрено использование адресуемой памяти, хранимых программ и условных переходов, и она была первым артефактом, способным выполнять универсальные вычисления. Коллега Бэббиджа Ада Лавлейс, дочь поэта Лорда Байрона, была, возможно, первым в мире программистом. (В ее честь назван язык программирования Аdа.) Она писала программы для незаконченной аналитической машины и даже размышляла над тем, что эта машина сможет играть в шахматы или сочинять музыку.

Искусственный интеллект во многом обязан также тем направлениям компьютерных наук, которые касаются программного обеспечения, поскольку именно в рамках этих направлений создаются операционные системы, языки программирования и инструментальные средства, необходимые для написания современных программ (и статей о них).

Но эта область научной деятельности является также одной из тех, где искусственный интеллект в полной мере возмещает свои долг: работы в области искусственного интеллекта стали источником многих идей, которые затем были воплощены в основных направлениях развития компьютерных наук, включая разделение времени, интерактивные интерпретаторы, персональные компьютеры с оконными интерфейсами и поддержкой позиционирующих устройств, применение среды ускоренной обработки, создание типов данных в виде связных списков, автома-тическое управление памятью и ключевые концепции символического, функционального, динамического и объектно-ориентированного программирования.

Теория управления и кибернетика (период с 1948 года по настоящее время)

•Каким образом артефакты могут работать под своим собственным управлением?

Первое самоуправляемое устройство было построено Ктесибием из Александрии (примерно в 250 году до н.э.); это были водяные часы с регулятором, который поддерживал поток воды, текущий через эти часы с постоянным, предсказуемым расходом. Это изобретение изменило представление о том, на что могут быть способны устройства, созданные человеком. До его появления считалось, что только живые существа способны модифицировать свое поведение в ответ на изменения в окружающей среде. К другим примерам саморегулирующихся систем управления с обратной связью относятся регулятор паровой машины, созданный Джеймсом Уаттом (1736—1819), и термостат, изобретенный Корнелисом Дреббелем (1572—1633), который изобрел также подводную лодку. Математическая теория устойчивых систем с обратной связью была разработана в ХIХ веке. Центральной фигурой в создании науки, которая теперь именуется теорией управления, был Норберт Винер (1894—1964).

Винер был блестящим математиком, который совместно работал со многими учеными, включая Бертрана Рассела, под влиянием которых у него появился интерес к изучению биологических и механических систем управления и их связи с познанием. Как и Крэг (который также использовал системы управления в качестве психологических моделей), Винер и его коллеги Артуро Розенблют и Джулиан Бигелоу бросили вызов ортодоксальным бихевиористским взглядам. Они рассматривали целенаправленное поведение как обусловленное действием регуляторного механизма, пытающего минимизировать “ошибку” — различие между текущим и целевым состоянием. В конце 1940-х годов Винер совместно с Уорреном Мак-Каллоком, Уолтером Питгсом и Джоном фон Нейманом организовал ряд конференций, на которых рассматривались новые математические и вычислительные модели познания; эти конференции оказали большое влияние на взгляды многих других исследователей в области наук о поведении. Книга Винера Cybernetics, в которой было впервые дано определение кибернетики как науки, стала бестселлером и убедила широкие круги общественности в том, что мечта о создании машин, обладающих искусственным интеллектом, воплотилась в реальность.

Предметом современной теории управления, особенно той ее ветви, которая получила название стохастического оптимального управления, является проектирование систем, которые максимизируют целевую функцию во времени. Это примерно соответствует представлению многих специалистов об искусственном интеллекте как о проектировании систем, которые действуют оптимальным образом. Почему же в таком случае искусственный интеллект и теория управления рассматриваются как две разные научные области, особенно если учесть, какие тесные взаимоотношения связывали их основателей? Ответ на этот вопрос состоит в том, что существует также тесная связь между математическими методами, которые были знакомы участникам этих разработок, и соответствующими множествами задач, которые были охвачены в каждом из этих подходов к описанию мира.

Дифференциальное и интегральное исчисление, а также алгебра матриц, являющиеся инструментами теории управления, в наибольшей степени подходят для анализа систем, которые могут быть описаны с помощью фиксированных множеств непрерывно изменяющихся переменных; более того, точный анализ, как правило, осуществим только для линейных систем. Искусственный интеллект был отчасти основан как способ избежать ограничений математических средств, применявшихся в теории управления в 1950-х годах. Такие инструменты, как логический вывод и вычисления, позволили исследователям искусственного интеллекта успешно рассматривать некоторые проблемы (например, понимание естественного языка, зрение и планирование), полностью выходящие за рамки исследований, предпринимавшихся теоретиками управления.

Лингвистика (период с 1957 года по настоящее время)

•Каким образом язык связан с мышлением?

В 1957 году Б.Ф. Скиннер опубликовал свою книгу Vеrbаl Веhavior,. Это был всеобъемлющий, подробный отчет о результатах исследований по изучению языка, проведенных в рамках бихевиористского подхода, который был написан наиболее выдающимся экспертом в этой области. Но весьма любопытно то, что рецензия к этой книге стала не менее известной, чем сама книга, и послужила причиной почти полного исчезновения интереса к бихевиоризму. Автором этой рецензии был Ноам Хомский, который показал, что бихевиористская теория не позволяет понять истоки творческой деятельности, осуществляемой с помощью языка, она не объясняет, почему ребенок способен понимать и складывать предложения, которые он до сих пор никогда еще не слышал. Теория Хомского, основанная на синтаксических моделях, восходящих к работам древнеиндийского лингвиста Панини (примерно 350 год до н.э.), позволяла объяснить этот феномен, и, в отличие от предыдущих теорий, оказалась достаточно формальной для того, чтобы ее можно было реализовать в виде программ.

Таким образом, современная лингвистика и искусственный интеллект, которые “родились” примерно в одно и то же время и продолжают вместе расти, пересекаются в гибридной области, называемой вычислительной лингвистикой или обработкой естественного языка. Вскоре было обнаружено, что проблема понимания языка является гораздо более сложной, чем это казалось в 1957 году. Для понимания языка требуется понимание предмета и контекста речи, а не только анализ структуры предложений. Это утверждение теперь кажется очевидным, но сам данный факт не был широко признан до 1960-х годов. Основная часть ранних работ в области представления знаний (науки о том, как преобразовать знания в такую форму, с которой может оперировать компьютер) была привязана к языку и подпитывалась исследованиями в области лингвистики, которые, в свою очередь, основывались на результатах философского анализа языка, проводившегося в течение многих десятков лет.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 838; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.