Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ВВЕДЕНИЕ. (подпись) (фамилия, инициалы)




Ряд Фурье


 

 

Допущена к защите

 

 

Заведующий кафедрой _______________

(подпись) (фамилия, инициалы)

Протокол № ___ от __________ 2015 г.

 

Защищена _________ 2015 г.

с отметкой «____________»

 

 

Курсовая работа

студента 403 группы

4 курса специальности «Математика. Информатика»

дневной формы

получения образования

________ Янковича Игоря Сергеевича

 

Научный руководитель – кандидат физико-математических наук, доцент

_________ И. В. Кирюшин


 

Минск, 2015

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ. 3

ГЛАВА 1. ВВЕДЕНИЕ ПОНЯТИЯ РЯДА ФУРЬЕ.. 4

ГЛАВА 2. ФИЗИЧЕСКИЕ ЗАДАЧИ ПРИВОДЯЩИЕ К ПОНЯТИЮ РЯДА ФУРЬЕ 6

ГЛАВА 3. СВОЙСТВА РЯДОВ ФУРЬЕ. 21

ГЛАВА 4. ПРИЛОЖЕНИЕ РЯДОВ ФУРЬЕ. 29

ЗАКЛЮЧЕНИЕ. 36

ЛИТЕРАТУРА.. 38

 


 

В последнее десятилетие в европейском высшем образовании остро стоит вопрос о подготовке специалистов, обладающих высокой профессиональной компетентностью и способных конкурировать на мировом рынке труда. Решению этой задачи, очевидно, может содействовать усиление вектора профессиональной направленности образования. Для реализации подобных целей должно применяться повышение мотивации к изучению математики в части ее физических приложений. Одним из примеров таких приложений являются некоторые разделы математического анализа, имеющие важное практическое значение.

Профессиональная направленность обучения математике определяется целями и задачами, определяемыми при подготовке специалистов. В последние время четко просматривается проблема отсутствия практико-ориентированного подхода при обучении математике.

Поэтому для повышения эффективности обучения при изучении понятия ряда Фурье необходимо отталкиваться не от готовых определений, а от физического контекста, рассмотрев физические задачи, приводящие к данному.

Ряд Фурье позволяет изучать периодические (непериодические) функции, разлагая их на компоненты. Переменные токи и напряжения, смещения, скорость и ускорение кривошипно-шатунных механизмов и акустические волны - это типичные практические примеры применения периодических функций в инженерных расчетах. Разложение в ряд Фурье основывается на предположении, что все имеющие практическое значение функции в интервале -π ≤x≤ π можно выразить в виде сходящихся тригонометрических рядов.

Целью данной курсовой работы является введения понятия ряда Фурье и изучение его общих свойств. Для ее достижения необходимо выполнить следующие задачи:

1) Ввести понятия ряда Фурье с опорой на физический контекст лекций;

2) Рассмотреть физические задачи, приводящие к понятию ряда Фурье;

3) Изучить свойства ряд Фурье в комплексной области;

4) Дать характеристику приложению рядов Фурье.

 


ГЛАВА 1. ВВЕДЕНИЕ ПОНЯТИЯ РЯДА ФУРЬЕ

В последние годы в образовании делается акцент на развитие компетентностного подхода. Особый вес приобретают не столько академические знания, умения и навыки выпускника вуза, сколько его способности квалифицированно осуществлять профессиональную деятельность, что и определяет качество подготовки. Актуальной становится проблема профессионально ориентированного обучения математике студентов физических и инженерно-технических специальностей вузов, поскольку математика выполняет в естествознании методологическую функцию и считается языком физики. Средством решения этой проблемы может быть интеграция содержания математики и физики (технических дисциплин) в рамках предметной области «математика». К этому выводу приходит все большее число исследователей [1]-[4].

Вопросами установления интеграционных (межпредметных) связей математических и физических дисциплин в обучении математике студентов физических и инженерно-технических специальностей вузов также занимались М. С. Аммосова, Н. А. Байгазова, В. Р. Беломестнова, Е. А. Василевская, Л. В. Васяк, М. Л. Груздева, В. А. Далингер, Т. В. Игнатьева, Е. И. Исмагилова, О. Е. Кириченко, И. Г. Михайлова, С. Х. Мухаметдинова, С. В. Плотникова, С. А. Розанова, Т. И. Федотова и др. Изданы интеграционные учебные пособия: сборники прикладных и физических задач по математике для студентов технических вузов [5], [6].

Анализ научно-методических публикаций, учебников и задачников по высшей математике показывает, что средствами осуществления интеграции математических и специальных дисциплин могут выступать: а) математические задачи прикладного характера, б) метод математического моделирования физических и физико-технических задач (интеграция на уровне практики математики). Однако в решении задач используются готовые результаты математической теории, которая при этом остается за рамками интеграции. А ведь именно теория как сложный «чужеродный» объект вызывает наибольшее неприятие, «отторжение», «сопротивление организма» при изучении математики будущими инженерами и физиками. Именно «чистая» теория математики обычно ведет к снижению их интереса к предмету и мотивации к учебе, ухудшению успеваемости, порождает серьезные психологические проблемы (например, затрудняет адаптацию первокурсников), формализм в знаниях и тем самым ограничивает развитие теоретического мышления. Последствия этого нельзя недооценить.

Таким образом, интеграцией охвачен лишь «внешний фасад» математики, что нельзя признать удовлетворяющим требованиям времени. Усилить междисциплинарные связи математики и физики (технических дисциплин), на наш взгляд, можно, если при введении математических понятий на лекциях опираться на моделирование физических (физико-технических) объектов и структур. В работе [7] предлагается перечень физических явлений для использования их моделей при введении соответствующих понятий математического анализа.

Проблему эффективности обучения высшей математике можно решить, если при введении важных математических понятий: 1) опираться на содержательное обобщение; 2) обобщение проводить на физическом (физико-техническом) материале. Таким образом, в обучении математике будущих инженеров и физиков должны фигурировать не готовые определения понятий и их, пусть даже и прикладные, иллюстрации, и не выделение понятий из математической же основы (в частности, из геометрической), а выявление всеобщих абстрактных форм среди многообразия физических явлений.

Алгоритм введения математических понятий при обучении студентов состоит из четырех основных стадий:

1) Описание физического явления (структуры) на языке физики и постановка физической задачи, решение которой требует нового математического понятия (при этом, вообще, должно использоваться несколько физических задач);

2) Выполнение такого преобразования содержания, которое позволяет перейти к отношению, играющему роль всеобщей основы для решения любой задачи данного вида;

3) Фиксация этого отношения в знаковой модели, позволяющей рассматривать его особенности в «чистом виде»;

4) Установление таких свойств данного отношения, которые дают возможность выявить условия и способ решения исходной задачи.

Таким образом, нами рассмотрен алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. С помощью алгоритма выполняется содержательное обобщение, основанное на выяснении условий происхождения математических понятий из физической действительности.

Этот способ создает условия для усиления мотивации к изучению математики, для профессиональной направленности обучения и преодоления формализма в знаниях студентов, для приобретения ими навыков математического моделирования физических явлений.


ГЛАВА 2. ФИЗИЧЕСКИЕ ЗАДАЧИ ПРИВОДЯЩИЕ К ПОНЯТИЮ РЯДА ФУРЬЕ

 

Понятие ряда Фурье можно ввести, исходя из задачи раскладывания периодических прямоугольных и пилообразных импульсов напряжения, подаваемых на осциллограф. Следует сообщить студентам, что такие периодические сигналы могут, например, играть роль тестовых при исследовании конструкции различных частотных фильтров, «обрезающих» определенные частоты, а само разложение ряда Фурье, широко используется в радиотехнике и теории связи.

 




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 658; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.