Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теория Норберта Винера




Новые попытки построить машины, способные к разумному поведению, принадлежат профессору МТИ Норберту Винеру. Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнес­ти к той или иной конкретной дисциплине. Они лежат где-то на стыке на­ук, поэтому к ним обычно не подходят столь строго. Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа «обратной связи», который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип «обратной связи» заключается в использовании информации, поступающей из окружающего ми­ра, для изменения поведения машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы: при малейшем изменении отраженных от самолета радиолокационных сигна­лов они соответственно изменяли наводку орудий, то есть - заметив по­пытку отклонения самолета от курса, они тотчас рассчитывали его даль­нейший путь и направляли орудия так, чтобы траектории снарядов и само­летов пересеклись. Затем Винер на этом же принципе разработал теории как машинного, так и человеческого разума. Он доказывал, что именно благодаря обратной связи все живое приспосабливается к окружающей сре­де и добивается своих целей. Винер говорил: «Все машины, претендующие на разумность, должны обладать способностью преследовать определенные цели и приспосабливаться, т.е. обучаться».

Нейронный подход.

Со временем ученые стали понимать, что создателям вычислительных машин необходимы и знания биологии. Нейрофизиолог Уоррен Маккалох со своим помощником Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко расп­ространенное мнение, что функции компьютера и мозга в значительной ме­ре сходны.

Используя знания о нейронах (основные активные клетки, составляющих нервную систему животных), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упро­щенно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, - рабочий инструмент одной из систем математической логики. Английский математик XIX века Джордж Буль, предложивший эту остроумную систему, показал, что логи­ческие утверждения можно закодировать в виде единиц и нулей, где еди­ница соответствует истинному высказыванию, а нуль - ложному, после че­го этим можно оперировать как обычными числами. В 30-е годы XX века американский ученый Клод Шеннон, по­нял, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи, поэтому двоичная система иде­ально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных «нейронов» и показа­ли, что подобная сеть может выполнять практически любые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта. Благодаря теории Маккалоха и Питтса, разработкам Винера интере к разумным машинам резко возрос.

Вскоре из нейронного, подхода к машин­ному разуму сформировался так называемый «восходящий метод» ­движение от простых аналогов нервной системы примитивных существ, об­ладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании «са­моорганизующейся системы» или «обучающейся машины». Основной трудностью, с кото­рой столкнулся этот метод, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. ней­ронов. Даже самые совершенные модели содержали лишь несколько сотен нейронов. В настоящее время нейронный подход является, по мнению ряда ученых, наиболее продуктивным, так как при этом создается структура, изоморфная человеческому мозгу, что, соответственно повышает вероятность появления систем искусственного интеллекта уже в ближайшем будущем. Элементная база и принципы функционирования современных компьютеров практически исчерпали себя, и компьютерная индустрия стоит на пороге коренной ломки, которая может пойти по пути использования моделей нейронов, что может существенно упростить работу с компьютером и повысить его вычислительную мощность.

В 1958 году Фрэнк Розенб­лат предложил модель электронного устройства, названного им перцептроном, оно должно было имити­ровать процессы человеческого мышления. Два года спустя, была проде­монстрирована первая действующая машина «Марк-1», которая могла распознавать некоторые из букв, написанных на карточках. Перцептрон Розенб­лата оказался наивысшим достижением нейромодельного метода создания искусственного интеллекта. Чтобы научить перцептрон способности строить догадки на основе исходных предпосылок, в нем пре­дусматривалась некая элементарная разновидность автономной работы. При распознавании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более существенными, чем другие. Перцептрон мог научаться выделять такие характерные осо­бенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности этого аппарата были ог­раниченными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые ис­пользовались на этапе ее обучения.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 1344; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.