Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основы выбора материала




Выбор материала для детали является сложной задачей, так как в большинстве случаев деталь можно создать либо из различных материалов, либо из сложных совокупностей.

Правильный выбор материала может быть сделан на основании анализа функционального назначения детали, условий ее эксплуатации и технологических показателей с учетом следующих факторов:

1. Материал является основой конструкции, т. е. определяет способность детали выполнять рабочие функции в изделии и противостоять действию климатических и механических факторов. Например, в качестве диэлектрика конденсатора постоянной емкости, работающего в контуре высокой частоты, применяют материал с малым значением тангенса угла потерь, В противном случае конденсатор внесет большое затухание в контур и снизит его добротность.

Если конденсатор имеет обкладки с большим сопротивлением, то потери в нем будут также большими, если даже диэлектрик имеет малый тангенс угла потерь.'

2. Материал определяет технологические характеристики детал и k как обрабатывается определенными технологическими методами. Например, объемные детали из текстолита можно обрабатывать только резанием. Те же детали из пластмасс изготавливают прессованием, что дает большую производительность при серийном и массовом производстве.

При прочих равных условиях следует выбирать тот материал, который допускает обработку наиболее прогрессивными методами: литьем, штамповкой, прессовкой, обработкой на станках-автоматах и т. д. Особенно это относится к деталям сложной формы, так как обработка их резанием увеличивает трудоемкость и материальные затраты.

3. От свойств материалов зависит точность изготовления детал. Так, точность штампованных гнутых изделий зависит от упругих свойств материала: после изъятия детали из штампа она распружинивает, поэтому деталь из мягкой стали при прочих равных условиях будет изготовлена с большей точностью, чем та же деталь из пружинящей стали.

От точности изделия зависит точность узла или прибора, куда оно входит. Поэтому выбор материала влияет на стоимость, Так, стоимость изделия из керамики, обработанного шлифовкой, при высоких требованиях к точности изготовления значительно увеличивается.

4. Материал влияет на габариты и массу прибора. Так, использование алюминиевых сплавов для шасси аппарата может дать сокращение массы в 1,5—3 раза при полном удовлетворении требований к прочности и жесткости; использование высококачественных трансформаторных сталей позволяет значительно сократить количество металла в трансформаторе и тем самым уменьшить его массу и габариты, что весьма важно для специальной малогабаритной аппаратуры.

5. Материал оказывает влияние на эксплуатационные характеристики детали, на ее надежность и долговечность. Контакты переключателя из латуни в сложных климатических условиях выдерживают незначительное число переключений. Календарный срок службы этих контактов независимо от числа переключений также крайне ограничен, так как окисление материала приводит к нарушению электрического контакта в переключателе. Те же детали, выполненные из стойких к окислению материалов (серебра, золота), выдерживают десятки тысяч переключений и в определенных условиях могут эксплуатироваться годами без дополнительной подрегулировки.

Выбор марки материала для соответствующих деталей нужно производить так, чтобы технические параметры этого материала (электрические, механические и др.) были согласованы с требованиями, предъявляемыми к разрабатываемой конструкции.

Удовлетворить в полной мере всем эксплуатационным и производственно-технологическим требованиям не всегда представляется возможным. Эти требования часто вступают в противоречие и приводят к различным конструктивным решениям. Задача конструктора заключается в выборе наиболее правильного компромиссного решения, при котором наиболее полно удовлетворяются главные требования к конструкции.

При конструировании деталей электронной аппаратуры конструктору приходится иметь дело с очень широкой номенклатурой материалов, обладающих различными физико-химическими свойствами. В зависимости от этих свойств используемые материалы можно классифицировать по различным признакам.

С точки зрения электропроводности все материалы подразделяют на проводники, полупроводники и диэлектрики. Рассмотрим проводники и диэлектрики.

К проводникам относят все металлы. Однако различные металлы обладают различной электропроводностью. Когда решающим фактором является малое удельное сопротивление электрическому току, то применяют медь, алюминий и другие материалы, обладающие малым удельным сопротивлением.

К материалам относят также провода и кабели, хотя многие из них состоят из металлических проводников, покрытых снаружи слоем изоляционного материала, исключающего возможность замыкания различных цепей электронного устройства.

Металлы широко используют в качестве конструкционных материалов для изготовления деталей. Номенклатура таких материалов необычайно велика: это различные марки углеродистых и легированных сталей, алюминиевые сплавы для холодной обработки и литья, магниевые сплавы. медные сплавы (латуни и бронзы) и др.

Материалы для холодной обработки выпускают в виде плит, листов, ленты, прутков (круглых и шестигранных), проволоки, трубок, уголков и других профилей сложных сечений.

Пластмассы. К числу диэлектриков относятся пластмассы, слоистые пластики и др. По механическим характеристикам они, как правило, уступают металлам. Так как многие детали электронных устройств при работе не несут больших нагрузок, то для их изготовления часто применяют пластмассы даже тогда, когда от детали не требуется электроизоляционных свойств. Связано это с тем, что при использовании пластмасс можно применять такие высокопроизводительные технологические процессы, как прессование и литье, которые позволяют за одну технологическую операцию получить деталь сложной формы. Это дает большой экономический эффект при серийном и массовом производстве. Отечественная промышленность выпускает большое количество различных пластмасс, различающихся физическими и технологическими характеристиками.

К группе термореактивных материалов относятся порошки К-21-22 " К-211-2, которые обладают хорошими электроизоляционными свойствами. Их применяют для изготовления ламповых панелей, каркасов' i |ушек и других деталей, работающих в поле высокой частоты.

Порошки К-211-3 и К-211-34 отличаются от предыдущих тем, что и них наполнитель из древесной муки заменен на минеральный, в результате чего они обладают повышенной теплостойкостью. Материал марки Кб (асбобакелит) имеет в качестве наполнителя асбестовое волокно и обладает повышенной механической прочностью и теплостойкостью;

его изоляционные свойства хуже, чем у предыдущих порошков.

У порошков марок К-18-2, К-17-2, К-18-3, К-20-2 электроизоляционные свойства хуже, чем у порошков К-21-22, К-211-2. Марки типа К-18-2, К 17-2 и другие применяют при изготовлении бытовой электроаппаратуры, неответственных изоляционных деталей в радиовещательной аппаратуре, ручек управления, клемм и т. д.

Материал АГ-4 получен на основе модифицированной фенолформальдегдной смолы и стекловолокна в качестве наполнителя. Высокая теплостойкость, хорошая механическая прочность и электроизоляционнные свойства обеспечили ему широкое распространение для самых разнообразных целей.

Аминопласты воспринимают красители, благодаря чему из них можно прессовать декоративные детали любого цвета. Они обладают дугостойкостью, поэтому их целесообразно использовать при изготовлении коммутационной аппаратуры.

Термопластичные материалы обладают наименьшей влагопоглощаемостью и лучшими электроизоляционными свойствами, особенно и диапазоне сверхвысоких частот. К этой группе относится полиэтилен (теплостойкость 100—120°С) и полистирол (теплостойкость 80°С). Полиэтилен, имеющий хорошую гибкость, используют в качестве изоляции в высокочастотных кабелях.

Полистирол используют при изготовлении каркасов катушек и других деталей, работающих в поле высокой частоты. К числу его недостатков следует отнести склонность к образованию поверхностных трещин при изменении температуры окружающего воздуха, а также в результате старения.

Наиболее теплостойким материалом является фторопдаст-4, который одновременно обладает хорошими диэлектрическими свойствами до диапазона сверхвысоких частот (СВЧ). Детали из фторопласта изготавливают методом механической обработки из прутков или брусков.

Для изготовления деталей радиоаппаратуры, работающей в условиях влажного тропического климата, применяют материалы, стойкие к грибообразованию. К их числу относятся К-18-22, К-211-3, К-211-34, АГ-4, фторопласт-4, полиэтилен и др.

К числу слоистых пластиков относятся гетинакс, стеклотекстолит (гл. 13). Листовой гетинакс и стеклотекстолит выпускают также с наклеенным тонким слоем медной фольги.

Керамические материалы. Все керамические материалы подразделяют на следующие три типа:

А — для изготовления высокочастотных конденсаторов;

Б — для изготовления низкочастотных конденсаторов;

В — высокочастотный материал, предназначенный для изготовления установочных изделий и других радиотехнических деталей (антенных изоляторов, катушек высокостабильных контуров и т. д.).

Каждый керамический материал по температуре, при которой его можно использовать, относят к одной из четырех категорий: 1-я — от —60 до +85°С; 2-я— от —60 до +125°С; 3-я— от —60 до 4-155°С; 4-я—-от —60 до +300°С.

Материалы типов А и Б подразделяют на классы и группы, отличающиеся в основном значениями диэлектрической проницаемости и температурного коэффициента диэлектрической проницаемости. Материалы типа В подразделяют на пять классов (VI, VII, VIII, IX и X), отличающихся механической прочностью, температурным коэффициентом линейного расширения (от 1,8-10~б до 11·10 -6) и технологическими, характеристиками.

Из этих материалов можно изготавливать различные по размерам и конфигурации электроизоляционные детали.

На каждый материал, выпускаемый промышленностью, имеются технические условия (ТУ) или ГОСТы. В этих документах приводятся технические характеристики материалов с допустимыми отклонениями, а также изменения характеристик под действием различных факторов (температуры, повышенной влажности и т. д.).

На материалы, выпускаемые в виде листов, лент, прутков, проволоки и т. д., в ГОСТах и ТУ приводится сортамент, т. е. сведения о форме, размерах и допусках.

При выборе материала конструктор должен учитывать не только его физико-механические свойства, обеспечивающие выполнение заданной функции деталью, но и должен выбрать такой сортамент, который пзволит изготовить деталь требуемой конфигурации с наименьшими затратами.




Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 1756; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.