Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Клинико-биохимическое исследование 2 страница




Преальбумины. Содержание их резко снижается при нарушениях функции печени, опухолевой кахексии, тяжелых заболеваниях лимфоидной системы. Резкое возрастание количества преальбуминов наблюдается при компенсированном, нефротическом синдроме.

Альбумин. Уменьшение концентрации альбумина в плазме является причиной понижения онкотического давления крови и развития отеков. Резкое снижение альбумина наблюдается при шоке. Поражение паренхимы печени при различных заболеваниях также может быть причиной уменьшения альбумина в сыворотке крови. Снижение альбумина в сыворотке крови наблюдается при хроническом нефрите, бронхопневмонии поросят, атрофическом рините свиней, лейкозе крупного рогатого скота, хроническом мастите; повышение – при болезни Ауески, эхинококкозе овец.

С-реактивный белок в сыворотке крови здоровых животных обычными методами, используемыми в лабораторной практике, не определяется. Поэтому считают, что появляется он в крови только при патологических состояниях, сопровождающихся воспалением и некрозом тканей. С-реактивный белок в больших количествах появляется в крови в острый период заболевания, поэтому его иногда называют белком “острой фазы”. С переходом заболевания в хроническую форму содержание С-реактивного белка в крови резко уменьшается.

Церулоплазмин – медьсодержащий белок сыворотки крови, он связывает 90-95 % меди, находящийся в ней. Установлено повышенное содержание церулоплазмина при инфаркте миокарда, злокачественных новообразованиях, различных заболеваниях печени. При гепатолентикулярной дегенерации (болезнь Вильсона) наблюдается накопление меди в печени, ведущее к циррозу. Содержание церулоплазмина в крови при этом снижено.

Иммуноглобулин G (IgG). Основной компонент гаммаглобулиновой фракции сыворотки крови, на его долю приходится около 80 % иммуноглобулинов. Его наличием обусловлена гуморальная защита организма от многих бактерий и вирусов, а также их токсинов.

Повышение уровня поликлональных IgG наблюдается при хронических воспалительных состояниях: стафилоккоковых инфекциях, хронически протекающем гепатите, хронически протекающих инфекциях (туберкулезе, лейкозе, ящуре, хроническом мастите крупного рогатого скота, бронхопневмонии поросят и др.).

Снижение IgG наблюдается при различных иммунодефицитах, новообразованиях лимфатической системы, после удаления селезенки, злокачественной анемии. Низкие значения IgG наблюдаются при врожденной недостаточности гуморального иммунитета.

Иммуноглобулин М (IgМ) составляет около 5% гаммаглобулиновой фракции. К классу IgМ относят антибактериальные антитела, изогемагглютинины, холодовые агглютинины. Они принимают активное участие в нейтрализации корпускулярных антигенов-эритроцитов, бактерий, вирусов.

Повышение концентрации поликлональных IgМ обнаруживается при острых воспалительных процессах, остром гепатите, остром и хроническом пиелонефрите, острых и хронических инфекциях, паразитарных заболеваниях. Снижение уровня IgМ наблюдается при моноклонильных гаммапатиях, агаммаглобулинемии.

Иммуноглобулин А (IgА). На долю IgА приходится около15 % иммуноглобулинов сыворотки крови. Имеются две формы IgА: сывороточный и секреторный. Характерно присутствие IgА в молозиве, слюне, носовых и бронхиальных секретах, слизистой оболочке кишечника, где он обуславливает местный иммунитет.

Уменьшение уровня IgА наблюдается при различных, приобретенных иммунодефицитах, новообразованиях лимфатической системы, после удаления селезенки, злокачественной анемии. Низкие значения IgА наблюдаются при врожденной недостаточности гуморального иммунитета.

Парапротеинемия – состояние, которое сопровождается появлением в сыворотке крови аномального белка, который в норме отсутствует обозначается, обычно, как парапротеинемия. Парапротеины (миеломные белки) появляются в крови чаще всего при злокачественных заболеваниях лимфоидной системы. Они являются гомогенной популяцией белковых молекул. Однородность парапротеинов резко отличает их от нормальных антител.

Диагностика парапротеинемии основывается на одновременном определении иммуноглобулинов соответствующего класса и иммуноэлектрофорезитическом исследовании сыворотки крови. Резкое увеличение иммуноглобулинов определенного класса (IgG, IgА, IgМ) и искажение иммуно-электрофорезитических линий преципитации указывает на парапротеинемию соответствующего класса.

Помимо белков в диагностических целях определяют также небелковые азотистые компоненты крови, к которым относят продукты обмена простых и сложных белков. Эти компоненты определяют часто, как небелковый или остаточный азот. Остаточным его называют потому, что он остается в надосадочной жидкости после осаждения белков. Хотя эти определения используют часто как синонимы, понятие “небелковый азот” несколько шире, чем понятие “остаточный” азот.

Остаточный азот. У здоровых животных колебания в содержании остаточного азота зависит в основном от количества белка в рационе. Низкие показатели остаточного азота в крови могут наблюдаться при неполноценном кормлении, дефиците белка в рационе.

Повышение остаточного азота в крови (азотемия) свидетельствует о нарушении азотистого метаболизма в организме. Увеличение остаточного азота в крови в большинстве случаев является плохим прогностическим признаком. Азотемии в зависимости от причин возникновения делятся на ретенционные и продукционные.

При ретенционной азотемии увеличение азотсодержащих продуктов в крови наступает вследствие нарушения выделительной способности почек. Наблюдается она при остром и особенно хроническом нефрите, пиелонефрите, туберкулезе почек и некоторых других заболеваниях. Внепочечная ретенционная азотемия может развиться на фоне тяжелого нарушения кровообращения. Она может наблюдаться при травматическом шоке, врожденных пороках сердца, препятствующих оттоку мочи после ее образования и других заболеваниях.

Продукционная азотемия возникает, как правило, вследствие усиленного распада белка и избыточного поступления азотсодержащих веществ в кровь. Функция почек при этом чаще всего не нарушена. Она наблюдается при лейкозе, злокачественных новообразованиях, туберкулезе легких, инфекционных заболеваниях с прогрессирующим течением, сопровождающихся лихорадкой, циррозе печени, острой желтой атрофии печени, отравлении гепатотропными ядами. Продукционная азотемия обнаруживается при острых гнойных воспалениях подкожной клетчатки, хирургическом шоке, ожогах, перитоните, острой кишечной непроходимости.

В клинико-диагностических лабораториях остаточный азот чаще всего определяют гипобромитным методом.

Мочевина. Содержание мочевины в крови определяется процессами ее образования и выведения. Значительное повышение мочевины в крови сопровождается выраженным клиническим синдромом интоксикации – уремией.

При острой почечной недостаточности содержание ее в крови резко возрастает. Мочевина наиболее индикаторный компонент остаточного азота, указывающий на почечную недостаточность, так как именно мочевина в наибольшей степени задерживается в крови при ухудшении функции почек. Поэтому содержание мочевины увеличивается быстрее остальных компонентов мочи.

Отношение азота мочевины к остаточному азоту используют для дифференциации патологии печени и почек. Если в норме это соотношение колеблется около 0,5, то при почечной недостаточности оно повышается, а при тяжелых поражениях печени – снижается.

Повышенное содержание мочевины в крови наблюдается при высоком содержании белка в рационе, а также при использовании некоторых лекарственных средств: анаболических стероидов, салицилатов, препаратов железа, препаратов, оказывающих нефротоксическое действие.

Снижение мочевины в крови происходит при патологии печени, сопровождающейся глубокими дистрофическими изменениями, отравлении фосфором, мышьяком, декомпенсированном циррозе, голодании.

Для определения используются ферментативные (уреазные) и многочисленные неферментативные методы. Различными фирмами предлагаются наборы реагентов, позволяющие работать по тому или иному методу. Быстрыми и простыми в выполнении являются потенциометрические методы с использованием ионоселективных электродов. Для полуколичественного определения можно использовать “сухой” анализ с использованием диагностических тест-полосок.

Креатин и креатинин – компоненты остаточного азота. Синтез креатина происходит в основном в печени и почках, с током крови он поступает в мышечную ткань, где происходит его фосфорилирование и превращение в макроэрг-креатинфосфат. После разрушения последнего образуется креатинин.

Увеличение креатина в крови наблюдается при поражении скелетной мускулатуры, мышечных дистрофиях, больших оперативных вмешательствах, гипертиреозе, инфекциях, сопровождающихся лихорадочными состояниями.

Повышение содержания креатинина в крови может быть обусловлено, как задержкой этого метаболита в организме, так и усиленным его образованием.

Ретенционная креатининемия наблюдается при нарушении функции почек. Обычно увеличение креатинина в крови рассматривают, как ранний признак почечной недостаточности.

Продукционная креатининемия отмечается при резко выраженном нарушении функций печени, кишечной непроходимости, лихорадочных состояниях, сердечно-сосудистой недостаточности, голодании, усиленной мышечной работе, гипертиреозе, гиперфункции надпочечников, сахарном диабете.

Для определения креатинина используют неферментативные методы, чаще всего колориметрические, основывающиеся на реакции Яффе, а также ферментативные, обычно с использованием фермента креатинфосфокиназы. Для проведения исследований выпускаются готовые диагностические наборы.

Аммиак – конечный продукт распада белка, входит в состав фракции остаточного азота. Аммиак сильно токсичен, особенно чувствительны к нему клетки центральной нервной системы.

Увеличение аммиака в крови наблюдается при острой печеночной недостаточности, жировой дистрофии печени, острой почечной недостаточности, кишечном и рубцовом дисбактериозе, нарушении руменогепатической циркуляции азота. Аммиак, накапливающийся в крови при тяжелых паренхиматозных поражениях печени, является одним из патологических факторов, приводящих к развитию печеночной комы.

Увеличение аммиака в крови наблюдается при врожденных энзимопатиях в случае дефектов синтеза ферментов орнитинового цикла.

Для определения аммиака используются титриметрические, потенциометрические и ферментативные методы. Выпускаются соответствующие диагностические наборы.

Мочевая кислота является конечным продуктом обмена пуриновых оснований у человекообразных обезьян, свиней и птиц. У остальных млекопитающих мочевая кислота окисляется до аллантоина.

Увеличение мочевой кислоты в крови наблюдается при патологических состояниях, связанных с усиленным распадом клеток, нарушением выделения мочевой кислоты с мочой, нарушением эндокринной регуляции обмена пуриновых оснований.

Мочевая кислота плохо растворимое в воде соединение. При повышении содержания ее в крови она может оказываться в тканях в виде соответствующих солей (уратов натрия).

Повышение содержания мочевой кислоты в крови наблюдается при заболеваниях почек, гемоглобинопатиях, пернициозной анемии, лейкозах, функциональной недостаточности печени, ожирении, отравлении свинцом, угарным газом.

Для определения мочевой кислоты используются химические методы с колориметрическим окончанием, спектрофотометрические, основанные на абсорбции мочевой кислоты при 293 нм и энзиматические.

Билирубин – продукт распада гемоглобина. Считается, что при распаде 1 г гемоглобина образуется 34 мг билирубина. Различают свободный, неконъюгированный, “непрямой” билирубин (дающий непрямую реакцию с диазореактивом) и связанный, конъюгированный (с глюкуроновой кислотой) “прямой” билирубин. При паренхиматозной желтухе в крови увеличивается в основном конъюгированный билирубин и в меньшей степени – свободный.

При обтурационной (застойной, механической, холестатической) желтухе в крови увеличивается, главным образом, связанный билирубин. При тяжелых формах застойных желтух несколько повышается содержание и свободного билирубина.

При гемолитической желтухе, обусловленной усиленным распадом эритроцитов, в крови резко увеличивается содержание свободного билирубина.

Кроме этих широко известных в клинической практике патологических состояний, гипербилирубинемия может наблюдаться при врожденных или приобретенных нарушениях систем, отвечающих за метаболизм и удаление билирубина из организма. Чаще всего это обусловлено дефектом соответствующих ферментов. Для определения билирубина в крови используют колориметрические, спектрофотометрические, флюориметрические методы. Наиболее широко в клинико-биохимических исследованиях используется колориметрический метод Йендрашика-Клеггорна-Грофа.

Увеличение содержания непрямого билирубина в сыворотке крови наблюдается при некоторых кровепаразитарных заболеваниях (пироплазмоз, нутталлиоз и др.), инфекционных (инфлюэнца, петехиальная горячка и др.), при отравлении гемолитическими ядами (куколь, солонин).

Увеличение обеих фракций наблюдается при поражении печени факторами инфекционного и токсического характера: при инфекционной анемии, мыте, лептоспирозе, отравлении фосфором и др.

Исследование гормонов и медиаторов. К гормонам относят биологически активные вещества, вырабатываемые в железах внутренней секреции, а также в специализированных клетках ЦНС, почек, хориона, слизистой желудочно-кишечного тракта и др. Отдельно выделяют тканевые гормоны, оказывающие действие по месту выработки. Для гормонов характерно очень низкое содержание их в крови (10-9-10- 6 моль/л).

Исследование гормонов в клинике используется в целях диагностики первичных поражений эндокринных желез, оценки состояния органов нейрогуморальной регуляции, при острых и хронических заболеваниях, для изучения действия лечебных мероприятий на состояние регуляции.

У сельскохозяйственных животных определение гормонов проводилось разными методами в различных возрастных группах, у животных, находящихся в разном физиологическом состоянии и содержащихся в различных условиях. Поэтому приведенные ниже количественные данные, следует воспринимать как ориентировочные. Каждая лаборатория должна отработать свои референтные данные с учетом используемого метода и контингента животных.

Кортикоидные гормоны (кортикоиды, кортикостероны, кортикостероиды.). Гормоны коры надпочечников, 70-80 % кортикоидов, секретируемых надпочечниками, приходится на долю кортикостерона, 17 – окси-кортикостерона и кортизола, на долю альдостерона приходится 2-5 %.

При исследовании кортикостероидов используют обычно кровь и мочу. При исследовании крови, находящиеся в ней гормоны предварительно экстрагируют, а затем количественно определяют с использованием колориметрических или флюориметрических методов.

При определении отдельных кортикостероидов широко применяются радиоиммунологические и иммуноферментные методы, с использованием соответствующих диагностических наборов. Контроль за содержанием кортикостероидов в крови необходим в случае определения функции коры надпочечников и также при введении стероидных препаратов.

Увеличение кортикостероидов в крови наблюдается при тяжелой работе, нервном возбуждении, стрессах.

Кортизол – основной представитель глюкокортикоидов, содержание его в крови сельскохозяйственных животных составляет 45 – 350 нмоль/л.

Повышение кортизола в крови происходит при карциноме надпочечников, злокачественных новообразованиях легких, поджелудочной железы, тимуса, при острых инфекциях, лечении эстрогенами, сахарном некомпенсированном диабете.

Уменьшение содержания кортизола в крови наблюдается при гипофункции гипофиза, гипотиреозе, дефиците ферментов, участвующих в биосинтезе кортизола, хроническом гепатите, циррозе печени.

При хронических гепатитах, циррозе печени, остеоартрите, хронической почечной недостаточности резко снижено содержание конъюгированных 17-оксикортикостероидов. Отмечено резкое увеличение 17-оксикортикостерона при раке коры надпочечников.

Альдостерон – основной представитель минералкортикоидов. Содержание альдостерона колеблется в довольно широких пределах, зависит от возраста, физиологического состояния, положения (лежа, стоя) и других факторов, ориентировочно 0,5 – 5 нмоль/л.

Уменьшение альдостерона в крови происходит при общей надпочечниковой недостаточности, гипофункции гипофиза, врожденном или приобретенном нарушении биосинтеза альдостерона, под влиянием введения гепарина, препаратов, блокирующих адренергическую систему.

Увеличение альдостерона имеет место при опухоли клубочкового слоя коры надпочечников, гиперплазии коры надпочечников, патологии внутренних органов, сопровождающихся гипертонией и отеками.

В моче определяют, обычно, предшественники кортикостероидов, составляющих фракцию 17-кетостероидов (17 – КС). Для определения 17 – КС в моче используются в основном химические методы, основанные на цветной реакции между метаболитами гормонов и метадинитробензолом. При определении отдельных компонентов, входящих в эту фракцию используют методы тонкослойной, распределительной, газожидкостной хроматографии. Резкое увеличение выделения 17 – КС с мочой происходит при опухолях яичка, андрогенной опухоли яичника, раке надпочечников, врожденной или приобретенной гиперплазии надпочечников.

Снижение 17-КС в моче наблюдается при гипотиреозе, тяжелых формах поражения печени, нефротическом синдроме, истощении.

Гормоны мозгового слоя надпочечников. К гормонам мозгового слоя надпочечников (катехоламинам) относятся адреналин, норадреналин, дофамин.

В связи с низким содержанием катехоламинов в крови и их быстрым удалением из кровотока для диагностических целей чаще проводят их определение в моче. При здоровых почках исследование мочи позволяет судить о характере функционирования мозгового слоя надпочечников не хуже, чем исследование крови.

Суточная экскреция катехоламинов с мочой колеблется в довольно широких пределах и составляет для адреналина от 10 до 50 нмоль/сут., норадреналина – от 20 до 150 нмоль/сут., дофамина 530 -2100 нмоль/сут.

Для определения катехоламинов используют биологические, хроматографические, флюориметрические и радиоизотопные методы исследования. Хотя радиоэнзиматические методы отличаются высокой чувствительностью, однако из-за ряда технических трудностей и дефицита некоторых реагентов, в клинико-биохимических исследованиях наиболее часто используются флюориметрические методы.

При сборе материала следует принять меры для стабилизации катехоламинов (кровь – охладить, мочу – подкислить). Для выделения и очистки катехоламинов используют хроматографию с последующим превращением элюированных катехоламинов во флюоресцирующие продукты.

Помимо самих катехоламинов в диагностических целях проводят определения в моче продуктов их метаболизма – ванилинминдальную кислоту (ВМК), гомованилиновую кислоту (ГВК). Для фракционирования и определения этих метаболитов широко используется высоковольтный электрофорез и тонкослойная хроматография.

Увеличение адреналина, норадреналина, дофамина в крови и моче и ванилинминдальной и гомованилиновой кислот в моче происходит при опухолях мозгового вещества надпочечников, в острый период инфаркта миокарда, гепатитах и циррозах печени, обострении язвенной болезни желудка и двенадцатиперстной кишки, нарушении экскреторной функции почек.

Уровень содержания катехоламинов в крови и моче снижается при остропротекающих инфекциях, остром лейкозе, коллагенозе, гипофункции надпочечников.

Наибольшее клиническое значение имеет определение катехоламинов при катехолсекретирующих опухолях хромаффинной ткани (феохромацитомах, параганглиомах, нейробластомах), при которых их содержание в крови и моче резко увеличено.

Гормоны щитовидной железы. Основными гормонами щитовидной железы являются тироксин (тетрайодтиранин,Т4 и трийодтиранин,Т3). Секретируемые в плазму гормоны связываются с тироксинсвязывающим глобулином (ТСГ), который по электрофоретической подвижности относится к a- глобулинам, а также с тироксинсвязывающим преальбумином (ТСПА). Необходимо иметь в виду, что при нарушении синтеза этих белков или их транспортной функции определение Т3 и Т4, не будут давать представление о функциональной активности щитовидной железы.

Тиреоглобулин, находящийся в фолликулах щитовидной железы не является гормоном, так как в обычных условиях он не секретируется в кровь. Однако, при тиреоидитах, онкологических заболеваниях щитовидной железы он может попадать в кровь и вызывать образование соответствующих антител.

В настоящее время клинико-биохимическая диагностика патологии щитовидной железы основывается на использовании радиоиммунологических и иммуноферментных методов определения Т34, тиреоглобулина, антител к нему, а также тиреотропного гормона (ТТГ).

Тиреоглобулин – гликопротеин с молекулярной массой около 650000 в нормальной сыворотке крови, обычно не определяется. Увеличение тиреоглобулина наблюдается при тиреоидите, диффузном токсическом зобе, раке щитовидной железы. В клинической практике определение тиреоглобулина используется в основном в качестве маркера новообразований в тканях щитовидной железы. Помимо тиреоглобулина при тех же показаниях определяют антитела к нему.

Тироксинсвязывающий глобулин (ТСГ) – специфический белок сыворотки крови, связывающий и транспортирующий гормоны щитовидной железы. Одна молекула ТСГ связывает одну молекулу Т3 и одну молекулу Т4. Концентрация ТСГ в крови прямо связана с продукцией тиреоидных гормонов. Так как метаболически активными являются только свободные гормоны, то для оценки функции щитовидной железы необходимо определять и концентрацию ТСГ. Ориентировочное содержание ТСГ в крови – 15 – 45 мг/л.

Обычно ТСГ определяют одновременно с Т4 и рассчитывают коэффициент Т4/ТСГ. При гипотиреозе этот коэффициент уменьшается, при гипертиреозе - увеличивается.

Повышение содержания ТСГ в крови происходит при беременности, инфекционном гепатите, наследственно детермированном повышении биосинтеза этого белка. Уменьшение содержания ТСГ в крови наблюдается при нефротическом синдроме, циррозе печени, наследственно обусловленном дефиците, акромегалии.

Гистамин – биогенный амин, участвующий в нейрогуморальной регуляции тонуса кровеносных сосудов и органов с гладкой мускулатурой, повышает проницаемость капилляров, усиливает секрецию пищеварительных желез.

Методы определения гистамина включают его экстракцию с последующим количественным определением. Химические методы определения основаны на взаимодействии некоторых его функциональных группировок с определенными реагентами. Наиболее часто в клинико-биохимических исследованиях используются флюориметрические методы. В последнее время для определения гистамина используются методы ИФА. Содержание гистамина в цельной крови составляет от 0,2 до 0,9 мкмоль/л.

Увеличение гистамина в крови наблюдается при аллергических процессах, гипоксии, травмах, переохлаждении и перегревании, хроническом миелоидном лейкозе, язвенной болезни желудка и двенадцатиперстной кишки, рентгеновском облучении, проникающей радиации. Повышение уровня гистамина в крови имеет место при гепатитах, циррозе печени, что, возможно, обуславливает аллергические проявления при этих заболеваниях.

Исследование минеральных веществ. Нарушение обмена минеральных веществ ведет к разнообразным патологическим состояниям. Это обусловлено множественностью функций, которые макро- и микроэлементы выполняют в организме. Полноценное минеральное питание в соответствии с разработанными нормами – необходимое условие нормального функционирования всех органов и систем организма животных.

Поэтому необходим оперативный контроль за состоянием минерального обмена, направленный на обнаружение несоответствия поступления минеральных веществ в организм, его физиологическим потребностям и выявлению самых ранних предклинических стадий нарушения минерального обмена. При этом необходимо иметь в виду, что объективно оценивать состояние минерального обмена чаще всего можно лишь при комплексном изучении большого числа элементов, так как их обмен тесно связан между собой. Наиболее часто для этих целей исследуют содержание минеральных веществ в сыворотке крови.

Исследование минеральных компонентов крови ведется либо химически методами, либо методами пламенной фотометрии.

Однако, химические методы более трудоемкие и в тех случаях, когда приходится определять одновременно несколько макро- и микроэлементов, требуют больших затрат времени. Поэтому все чаще используются методы пламенной фотометрии.

Пламенная фотометрия основана на излучении (эмиссионный метод) или поглощении (абсорбционный метод) света атомами веществ, испаряемых в пламени. Сущность метода заключается в том, что раствор анализируемого вещества в распыленном виде подается в пламя газовой горелки, где происходит его испарение. Атомы анализируемого вещества поглощают свет стандартного источника или сами испускают его. Количество испускаемого или поглощенного света при определенных условиях пропорционально числу возбужденных атомов.

Пламенная фотометрия в виде эмиссионного метода при анализе крови чаще всего используется для определения содержания натрия, калия, кальция, лития. Для определения интенсивности излучения используют пламенные фотометры различных марок, работа с которыми проводится в соответствии с прилагаемой инструкцией.

При работе с биологическим материалом, озоление необходимо проводить очень осторожно, чтобы не потерять и определяемые элементы. Поэтому сжигание проводят при возможно более низких температурах, используя, как правило, мокрое озоление с применением перекиси водорода, серной кислоты и других окислителей. Вследствие нестабильности пламени газовой горелки каждое исследование повторяют не менее 2-3 раз. Для количественного расчета используют метод калибровочных графиков, которые строят по серии стандартных смесей.

Широкое распространение получил абсорбционный метод фотометрии. В этом варианте атомы исследуемого металла, находящегося в виде атомного пара, поглощают свет определенной длины волны. Интенсивность света, прошедшего через пламя регистрируется фотодетектором. Использование современных атомно-абсорбционных спектрофотометров позволяет определять большое количество различных элементов с относительной ошибкой 2-4%.

Натрий.При недостатке натрия у скота наблюдается ряд патологических симптомов (огрубение шерстного покрова, извращение аппетита, нерегулярная охота, бесплодие). Снижается продуктивность, ухудшается использование протеина корма, нарушаются процессы рубцового метаболизма. Недостаточность натрия может быть связана с избытком калия в рационе, так как при этом резко возрастает выведение натрия с мочой. Увеличение содержания натрия в крови (гипернатриемия) наблюдается при повышенном диурезе, гиперфункции коры надпочечников, чрезмерном поступлении хлорида натрия с кормом. Уменьшение содержания натрия в крови (гипонатриемия) может иметь место при недостаточном его поступлении, чрезмерном выведении с почками при поносах.

Калий. Дефицита калия в рационах сельскохозяйственных животных практически не бывает. При содержании животных на синтетической диете с недостатком калия наблюдается замедленный рост, атаксия, атония кишечника, нарушение сердечной деятельности. Избыточное поступление калия с травой рассматривается как один из этиологических факторов пастбищной тетании. Увеличение содержания калия в крови (гиперкалиемия) установлена при повышенном поступлении калия с кормом, распаде клеток и тканей (гемолитическая анемия, некрозы), почечной недостаточности, гиперфункции коры надпочечников. Причиной гипокалиемии (уменьшение содержания калия в крови) может быть недостаточное поступление калия с кормом, усиленное выведение его с мочой, при поносах, метаболическом алкалозе и ацидозе, парентеральном введении хлорида натрия и глюкозы.

Кальций. Основной физиологической формой кальция в организме является ионизированная форма. Количество ионизированного кальция зависит от рН крови. При повышении рН усиливается связывание кальция с белками и содержание ионизированного кальция уменьшается. Поэтому при алкалозах может развиться тетания даже при достаточном содержании общего кальция в крови. При хронических ацидозах повышается растворимость солей костной ткани, и кальций теряется организмом. Поэтому даже при нормальном содержании солей кальция в рационе и функционировании паращитовидных желез может развиваться остеомаляция. Недостаток кальция в рационах сельскохозяйственных животных ведет к разнообразной патологии (рахит, остеомаляция, остеопороз, родильный парез). При этих заболеваниях наблюдается уменьшение содержания общего кальция в сыворотке крови (гипокальциемия). Снижение содержания кальция в крови наблюдается также при тетании, хронических заболеваниях почек, лейкозе, бронхопневмонии, контагиозной плевропневмонии. Увеличение содержания кальция в крови (гиперкальциемия) может быть алиментарного происхождения, после приема кормов с большим содержанием кальция, а также наблюдается при ряде патологических состояний - гипервитаминозе Д1, деформирующем артрите, гиперфункции паращитовидных желез, перитоните, желтухе. Повышение содержания кальция в крови наблюдается иногда при острых панкреатитах, нарушении эндокринной регуляции минерального обмена.

Магний. При недостатке магния в рационах жвачных наблюдается тяжелое заболевание – гипомагниемия или травяная (пастбищная) тетания. Хотя это заболевание может быть предупреждено или излечено введением солей магния, считают, что оно вызывается не только недостатком магния, но и дисбалансом других элементов (в частности калия). Увеличение содержания магния в сыворотке крови наблюдается при введении животным повышенных доз препаратов, содержащих магний, при отравлении щавелевой кислотой и ее солями, болезнях печени, почечной недостаточности. Снижение содержания магния в крови может быть при пастбищной тетании у жвачных, клонико-тонических судорогах у поросят, поносах, белково-минеральном голодании, фтористой интоксикации, а также при избыточном поступлении в организм азота с концентрированными кормами.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 554; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.063 сек.