Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Исследование формы эллипса по его уравнению




Эллипс

Кривые второго порядка

Воронеж 2012

Учебно-методическое пособие

для студентов I курса дневного и заочного отделений

физико-математического факультета

УДК 513 (075.8)

 

Составитель:

 

Кандидат физико-математических наук, доцент Н.А. Заварзина

 

 

Лекция №1

1. Определение эллипса и его уравнение

Определение. Эллипсом называется множество всех точек плоскости, для каждой из которых сумма расстояний до двух фиксированных точек плоскости F1 и F2 есть величина постоянная, равная 2a > ǀF1F2ǀ=2c.

Точки F1 и F2 называются фокусами эллипса, а F1F2│= 2с ─ фокальным расстоянием.

Пусть на плоскости даны две точки F1 и F2. Для того чтобы составить уравнение эллипса на плоскости введём ортонормированную систему координат, начало которой поместим с середину отрезка [F1F2]. Ось Ох расположим таким образом, чтобы точки F1 и F2 принадлежали этой оси.

Рис.1.

В этом случае фокусы эллипса принимают следующие координаты F1(c;0) и F2(-c;0). (см. Рис.1.) Пусть М(х;у) ─ произвольная точка эллипса. Тогда, по определению, │МF1│+ │МF2│ = 2a. (1)

По формуле вычисления расстояния между точками имеем: , . Таким образом из (1) =>

. Запишем полученное выражение в виде и возведём в квадрат. В результате, после приведения подобных членов, получаем . Для того чтобы освободиться от корня возведём последнее выражение в квадрат. В результате после элементарных преобразований имеем: . (2)

Учитывая, что > обозначим (3)

и запишем (2) виде: . После деления полученного уравнения на получаем, что если точка М(х;у) принадлежит эллипсу, то её координаты удовлетворяют уравнению

 

(4)

Покажем теперь, что если координаты некоторой точки М111) удовлетворяют уравнению (4), то точка М1 принадлежит эллипсу.

Пусть для точки М111) справедливо равенство (5)

Из (5) следует: (6)

Вычислим

=> .

Заметим, что величина стоящая под знаком модуля положительна не только при < 0, но и при > 0 так как с < и из (6) => .

Аналогично, если провести подобные преобразования для , получим . => => точка М1 принадлежит эллипсу.

Таким образом, уравнение (4) является уравнением эллипса, которое называется каноническим уравнением эллипса.

[MF1] ─ называется первым фокальным радиусом эллипса; .

[MF2] ─ называется вторым фокальным радиусом эллипса; .

Заметим, что если F1= F2, то с = 0 и => => окружность частный случай эллипса.

Пусть дан эллипс своим каноническим уравнением (4) .

Для определения вида кривой заданной уравнением (4), заметим:

а) Координаты начала системы координат точки О(0;0) не удовлетворяют

уравнению (4). => Эллипс не проходит через начало координат.

б) Найдём точки пересечения эллипса с осью Ох: => => Эллипс две точки пересечения с осью Ох: и .

в) Найдём точки пересечения эллипса с осью Оу: => => Эллипс две точки пересечения с осью Ох: и .

г) Если точка М(х;у) принадлежит эллипсу, то из уравнения (4) следует, что и точка М1(-х;у) принадлежит эллипсу. => Эллипс симметричен относительно оси Ох.

д) Если точка М(х;у) принадлежит эллипсу, то из уравнения (4) следует, что и точка М2(х;-у) принадлежит эллипсу. => Эллипс симметричен относительно оси Оу.

На основании г) и д) можно сделать вывод, что эллипс симметричен относительно начала системы координат.

е) Из уравнения (4) , => и => Все точки эллипса лежат внутри прямоугольника, ограниченного прямыми и .

ж) Так как , то можно сделать вывод, что с ростом у от 0

до величина х убывает от до 0.

з) => => =>

<0 => Если , то , то есть функция выпукла вверх. Учитывая симметричность эллипса относительно осей координат, получаем изображение эллипса (Рис.2.).

Рис.2

Точки А1, А2, В1, В2 ─ называют вершинами эллипса. [A1A2] ─ большой осью эллипса, [B1B2] ─ называют малой осью эллипса. Числа и называют полуосями эллипса.

 




Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 1139; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.