Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия и определения. Измерение удельной электрической проводимости полупроводников четырехзондовым методом

Измерение удельной электрической проводимости полупроводников четырехзондовым методом

Лабораторная работа № 5

 

Цель работы:

Изучить методику определения удельного сопротивления полупроводниковых материалов четырехзондовым методом.

В первом приближении полупроводники выделяют из других веществ по значению удельного электрического сопротивления р. Считают, что удельное сопротивление металлов менее 10 -4 Ом см, полупроводников — в диапазоне от 10-3 до 109 Ом см, диэлектриков — более 1010 Ом см.

Из числа полупроводников наиболее подходящим для изготовления интегральных схем оказался кремний. Для изготовления дискретных транзисторов применяется германий. В последнее время все большее количество ИС изготавливается из арсенида галлия.

Одним из основных электрофизических параметров полупроводника является его удельное сопротивление r (Ом×см) или обратная ему величина - удельная электрическая проводимость (См×см-1).

Рассмотрим электронный полупроводник. Плотность тока j определяется концентрацией свободных носителей n, средней дрейфовой скоростью vср и зарядом e:

 

(1)

 

Средняя скорость дрейфа очень просто связана с параметром, характеризующим рассеяние носителей заряда при их движении в решётке кристалла: средним временем свободного пробега носителей τср, напряжённостью электрического поля Е зарядом е и эффективной массой дырки или электрона m:

 

, (2)

 

где m - подвижность.

Таким образом, из (1), (2) следует:

 

 

Из закона Ома в дифференциальной форме следует, что величина e×n×m имеет смысл удельной электрической проводимости:

.

 

Если имеется полупроводник с обоими типами носителей заряда, то:

 

σ = e(nmn + pmp)

 

Если полупроводник легирован примесными атомами какого либо одного сорта с малой энергией ионизации (например, атомами B, P, As в Si и Ge), то приближённо можно считать, что уже при комнатной температуре вся примесь однократно ионизирована, т.е. n» N или p»N, где N - полная концентрация легирующей примеси. И, если известно m, то по σ или по r, которые можно непосредственно измерить, определяется N. Концентрация легирующей примеси является очень важным параметром полупроводникового материала. Непосредственно для наиболее важных полупроводниковых материалов (Si, Ge, GaAs) обоих типов N удобно определять по графику Ирвина. (см. рисунок 1.)

Рисунок 1 - График Ирвина. Зависимость удельного сопротивления от концентрации легирующей примеси для полупроводников N и P типа проводимости

 

Этот график получен экспериментально на основе многочисленных измерений при комнатной температуре подвижности носителей в полупроводниках с известной заранее концентрацией примеси. При небольших концентрациях примеси график даёт хорошее соответствие проводимости и концентрации.

Описание метода

Четырех зондовый метод измерения удельной электрической проводимости полупроводников является самым распространенным. Основное преимущество четырехзондового метода состоит в том, что не требуется создания омических контактов к образцу и возможно измерение удельной проводимости образцов самой разнообразной формы и размеров. Условием для его применимости с точки зрения формы образца является наличие плоской поверхности, линейные размеры которой превосходят линейные размеры системы зондов.

Рассмотрим теоретические основы четырех зондового метода измерения удельной проводимости применительно к образцу, представляющему собой полубесконечный объем, ограниченный плоской поверхностью.

На плоской поверхности образца размещают четыре металлических электрода в виде металлических иголок—зондов с малой площадью соприкосновения. Все четыре зонда расположены вдоль одной прямой линии (рисунок 2). Через два внешних зонда 1 и 4 пропускают электрический ток I, на двух внутренних зондах 2 и 3 измеряют падение напряжения U23. По измеренным значениям разности потенциалов между зондами 2 и 3 тока, протекающего через зонды 1 и 4, можно определить величину удельной проводимости образца.

 

Рисунок 2 - Схема измерения удельной проводимости четырехзондовым методом

 

Чтобы найти аналитическую связь между удельным сопротивлением ρ, током I и напряжением U23, необходимо решить более простую задачу, связанную с протеканием тока через отдельный точечный зонд, находящийся в контакте с плоской поверхностью полупроводникового образца полу бесконечного объема (рисунок 3).

 

 

Рисунок 3- Модель зонда

 

Распределение потенциала в образце имеет сферическую симметрию. Для вычисления потенциала U (r) в объеме образца в зависимости от расстояния r до контакта нужно решить уравнение Лапласа в сферической системе координат, в котором оставлен лишь член, зависящий от r:

 

(3)

при условии, что

- в точке r = 0 U › 0

- при очень больших r U → 0

Интегрирование уравнения (3) с учетом указанных граничных условий дает следующее решение:

 

U(r) = (4)

Потенциал в любой точке образца равен сумме потенциалов, создаваемых в этой точке током каждого электрода. При этом потенциал имеет положительный знак для тока, втекающего в образец (зонд 1), и отрицательный знак для тока, вытекающего из образца (зонд 4). Тогда из уравнения (4) получим потенциалы измерительных зондов 2 и 3 соответственно:

 

(5)

и , (6)

 

а разность потенциалов из (5) и (6):

 

(7)

 

Соотношение (7) позволяет определить удельное сопротивление образца:

 

(8)

 

Если расстояния между зондами одинаковы, т. е. s1 = s2 = s3 = s, то (8) приобретает вид:

 

, (9)

 

где U23 в В; I в А; s в м, ρ в Ом ∙ м (1 Ом ∙ м == 10-2 Ом ∙ см).

 

Сформулируем условия, необходимые для измерения проводимости четырех зондовым методом:

- измерения проводятся на плоской поверхности однородного изотропного образца (для применения четырехзондового метода достаточно, чтобы образец был однороден в некоторой области порядка 5s);

- инжекция неосновных носителей заряда в объем образца отсутствует из-за достаточно высокой скорости поверхностной рекомбинации, что достигается соответствующей обработкой поверхности образца;

- поверхностная утечка тока отсутствует;

- зонды имеют контакты с поверхностью образца в точках, которые расположены вдоль прямой линии;

- граница между токонесущими электродами и образцом имеет форму полусферы малого диаметра;

- диаметр контакта зонда мал по сравнению с расстоянием между зондами.

Обычно измерения проводят при токе порядка 1 мА или меньше. Расстояние между зондами выбирают 0,1 — 1,0 мм. Зонды монтируют в специальной четырехзондовой головке, где расстояния между зондами строго фиксированы. Для изготовления зондов используют вольфрамовую проволоку или проволоку из твердых сплавов ВК-10, ВК.-15 и ВК.-20. Концы зондов затачивают электролитически или путем электроэрозионной обработки и полировки с применением алмазных порошков так, чтобы диаметр контакта был значительно меньше расстояния между ними. Если диаметр контакта составляет 0,05 s или меньше, то погрешность измерения, обусловленная конечными размерами контактов, составляет менее 2%. Надежный самоустанавливающийся контакт каждого зонда с поверхностью образца обеспечивается за счет пружин. Величина давления на контакт не оказывает существенного влияния на результаты измерений, однако большое давление может повредить образец или зонд. Четырехзондовую головку крепят к манипулятору, с помощью которого головка устанавливается на поверхности образца.

Для получения малых величин контактных сопротивлений металлических зондов поверхность образца, на которой производят измерения, обрабатывают(полирующее травление, химическая обработка(перекисно-аммиачная)).

Измерения удельного сопротивления четырехзондовым методом производят как при постоянном, так и при переменном токе.

Важнейшим недостатком методов измерения удельного сопротивления при постоянном токе является влияние термо- э. д. с. и различных электрических наводок ложные сигналы. Проведение измерений при двух направлениях тока уменьшает ошибки, обусловленные наводками.

Применение милливольтметра с входным сопротивлением порядка 108 Ом дает возможность измерять удельное сопротивление на слитках и пластинах кремния до 3000 Ом-см. Если использовать электрометры с входным сопротивлением порядка 1014—1016 Ом, можно измерять практически любые полупроводниковые материалы.

Данная работа проводится с помощью имитационной программы, которая моделирует измерение на четырехзондовой установке.

На рисунке 4 дана экранная форма, позволяющая произвести измерения.

 

ПП - пластина полупроводника, К - ключ-коммутатор, позволяющий менять направление тока через зонды 1-4, П1, П2- потенциометры установки тока «Грубо» и «Точно», ИП- источник питания, ЦА- микроамперметр, ЦВ- цифровой вольтметр

 

Рисунок 4 – Экранная форма четырехзондовой установки

 

С помощью ЦВ определяют падение напряжения на зондах 3-4. Величину тока устанавливают по возможности небольшой (100¸1000 мкА) и постоянной для одной и той же серии измерений.

<== предыдущая лекция | следующая лекция ==>
IV. Типовой пример расчетов | Простейшие линейные цепи постоянного тока
Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 1343; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.