Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выбор биотехнологических объектов

Главным звеном биотехнологического процесса, определяющим всю его сущность, является биологический объект, способный осуществлять определенную модификацию исходного сырья и образовывать тот или иной необходимый продукт. В качестве таких объектов биотехнологии могут выступать клетки микроорганизмов, животных и растений, трансгенные животные и растения, а также многокомпонентные ферментные системы клеток и отдельные ферменты.

Основой большинства современных биотехнологических производств до сих пор все еще является микробный синтез, т. е. синтез разнообразных биологически активных веществ с помощью микроорганизмов. К сожалению, объекты растительного и животного происхождения в силу ряда причин еще не нашли столь широкого применения.

Независимо от природы объекта, первичным этапом разработки любого биотехнологического процесса является получение чистых культур организмов (если это микробы), клеток или тканей (если это более сложные организмы – растения или животные). Многие этапы дальнейших манипуляций с последними (т.е. с клетками растений или животных), по сути дела, являются принципами и методами, используемыми в микробиологических производствах. И культуры микробных клеток, и культуры тканей растений и животных с методической точки зрения практически не отличаются от культур микроорганизмов. Поэтому дальнейшие рассуждения целесообразно вести применительно к микробиологическим объектам.

Мир микроорганизмов крайне разнообразен. В настоящее время относительно хорошо охарактеризовано (или известно) более 100 тысяч различных их видов. Это в первую очередь прокариоты (бактерии, актиномицеты, риккетсии, цианобактерии) и часть эукариот (дрожжи, нитчатые грибы, некоторые простейшие и водоросли). При столь большом разнообразии микроорганизмов весьма важной, а зачастую и сложной, проблемой является правильный выбор именно того организма, который способен обеспечить u1087 получение требуемого продукта, т. е. служить промышленным целям. Разделение микроорганизмов на промышленные и непромышленные для лиц, далеких от микробиологии, молекулярной биологии и молекулярной генетики, кажется достаточно определенным: те микроорганизмы, которые используются в промышленном производстве – промышленные, а те, которые не используются, – непромышленные.

Однако для тех, кто близко соприкасается с вышеперечисленными отраслями биологических знаний, граница проходит между немногочисленной, но глубоко изученной группой микроорганизмов, служащих модельными объектами при исследованиях фундаментальных жизненных процессов, и всеми остальными микроорганизмами, которые, как правило, генетиками, молекулярными биологами и генными инженерами не изучались совсем или изучались в очень ограниченной степени.



К числу первых относятся кишечная палочка (E. coli), сенная палочка (Bac. subtilis) и пекарские дрожжи (S. cerevisiae).

Во многих биотехнологических процессах используется ограниченное число микроорганизмов, которые классифицируются как GRAS («generally recognized as safe» обычно считаются безопасными). К таким микроорганизмам относят бактерии Bacillus subtilis, Bacillus amyloliquefaciens, другие виды бацилл и лактобацилл, виды Streptomyces. Сюда также относят виды грибов Aspergillus, Penicillium, Mucor, Rhizopus и дрожжей Saccharomyces и др. GRAS-микроорганизмы непатогенные, нетоксичные и в основном не образуют антибиотики, поэтому при разработке нового биотехнологического процесса следует ориентироваться на данные микроорганизмы, как базовые объекты биотехнологии.

Микробиологическая промышленность сегодня использует тысячи штаммов из сотен видов микроорганизмов, которые первично были выделены из природных источников на основании их полезных свойств, а затем (в большинстве своем) улучшены с помощью различных методов. В связи с расширением производства и ассортимента выпускаемой продукции в микробиологическую промышленность вовлекаются все новые и новые представители мира микробов. Следует отдавать себе отчет, что в обозримом будущем ни один из них не будет изучен в той же степени, как E.coli и Bac.subtilis. И причина этого очень простая – колоссальная трудоемкость и высокая стоимость подобного рода исследований.

Следовательно, возникает проблема разработки стратегии и тактики исследований, которые обусловили бы с разумной затратой труда извлечь из потенциала новых микроорганизмов все наиболее ценное при создании промышленно важных штаммов-продуцентов, пригодных к использованию в биотехнологических процессах.

Классический подход заключается в выделении нужного микроорганизма из природных условий.

Из естественных мест обитания предполагаемого продуцента отбирают образцы материала (берут пробы материала) и производят посев в элективную среду, обеспечивающую преимущественное развитие интересующего микроорганизма, т. е. получают так называемые накопительные культуры.

Следующим этапом является выделение чистой культуры с дальнейшим дифференциально-диагностическим изучением изолированного микроорганизма и, в случае необходимости, ориентировочным определением его продукционной способности.

Существует и другой путь подбора микроорганизмов-продуцентов – это выбор нужного вида из имеющихся коллекций хорошо изученных и досконально охарактеризованных микроорганизмов. При этом, естественно, устраняется необходимость выполнения ряда трудоемких операций.

Главным критерием при выборе биотехнологического объекта (в нашем случае микроорганизма-продуцента) является способность синтезировать целевой продукт. Однако помимо этого, в технологии самого процесса могут закладываться дополнительные требования, которые порой бывают очень и очень важными, чтобы не сказать решающими. В общих словах микроорганизмы должны:

• обладать высокой скоростью роста;

• утилизировать необходимые для их жизнедеятельности дешевые субстраты;

• быть резистентными к посторонней микрофлоре, т. е. обладать высокой конкурентоспособностью.

Все вышеперечисленное обеспечивает u1079 значительное снижение затрат на производство целевого продукта. Конечно, в каждом конкретном случае ведущим является какой-то один из этих критериев, поскольку в природе устроено так, что во всем получить выигрыш не удается никогда.

И это правило необходимо постоянно иметь в виду. Ниже приводятся примеры, имеющие своей целью проиллюстрировать ранее сказанное.

1.Одноклеточные организмы, как правило, характеризуются более высокими скоростями роста и синтетических процессов, чем высшие организмы. Тем не менее это присуще не всем микроорганизмам. Существуют такие из них (например, олиготрофные), которые растут крайне медленно, однако они представляют известный интерес, поскольку способны продуцировать различные очень ценные вещества.

2. Особое внимание как объекты биотехнологических разработок представляют фотосинтезирующие микроорганизмы, использующие в своей жизнедеятельности энергию солнечного света. Часть из них (цианобактерии и фотосинтезирующие эукариоты) в качестве источника углерода утилизируют СО2, а некоторые представители цианобактерий, ко всему сказанному, обладают способностью усваивать атмосферный азот (т. е. являются крайне неприхотливыми к питательным веществам). Фотосинтезирующие микроорганизмы перспективны как продуценты аммиака, водорода, белка и ряда органических соединений. Однако пpoгpecca в их использовании вследствие ограниченности фундаментальных знаний об их генетической организации и молекулярно-биологических механизмах жизнедеятельности, по всей видимости, следует ожидать не в скором будущем.

3. Определенное внимание уделяется таким объектам биотехнологии, как термофильные микроорганизмы, растущие при 60–80° С. Это их свойство является практически непреодолимым препятствием для развития посторонней микрофлоры при относительно не стерильном культивировании, т. е. является надежной защитой от загрязнений. Среди термофилов обнаружены продуценты спиртов, аминокислот, ферментов, молекулярного водорода. Кроме того, скорость их роста и метаболическая активность в 1,5–2 раза выше, чем у мезофилов. Ферменты, синтезируемые термофилами, характеризуются повышенной устойчивостью к нагреванию, некоторым окислителям, детергентам, органическим растворителям и другим неблагоприятным факторам. В то же время они мало активны при обычных температурах. Так, протеазы одного из представителей термофильных микроорганизмов при 200 С в 100 раз менее активны, чем при 750 С. Последнее является очень важным свойством для некоторых промышленных производств. Например, широкое применение в генетической инженерии нашел фермент Taq-полимераза из термофильной бактерии Thermus aquaticus. Ранее уже упоминалось о еще одном весьма существенном свойстве этих организмов, а именно, что при их культивировании температура среды, в которой они пребывают, значительно превышает температуру окружающей среды. Данный высокий перепад температур обеспечивает быстрый и эффективный обмен тепла, что позволяет использовать биологические реакторы без громоздких охлаждающих устройств. А последнее, в свою очередь, облегчает перемешивание, аэрацию, пеногашение, что в совокупности значительно удешевляет процесс.

Культуру продуцента хранят

4.1 в запаянных ампулах

4.2 в жидком азоте

4.3 на твердых носителях – пшено, ячмень, рис.

4.4 в лиофилизированном состоянии – лучше хранятся споры, чем живые

клетки

4.5 в ампулах в лиофилизированном состоянии на носителе (пшено, желатин-

альгинат натрия)

4.6 в пробирке на скошенном агаре – срок хранения до нескольких месяцев.

Селекция. Неотъемлемым компонентом в процессе создания наиболее ценных и активных продуцентов, т. е, при подборе объектов в биотехнологии, является их селекция. А генеральным путем селекции является сознательное конструирование геномов на каждом этапе отбора нужного продуцента. Такая ситуация не всегда могла быть реализована, вследствие отсутствия эффективных методов изменения геномов селектируемых организмов. В развитии микробных технологий в свое время сыграли (да и сейчас еще продолжают играть!) очень важную роль методы, базирующиеся на селекции спонтанно возникающих измененных вариантов, характеризующихся нужными полезными признаками. При таких методах обычно используется ступенчатая селекция: на каждом этапе отбора из популяции микроорганизмов отбираются наиболее активные варианты (спонтанные мутанты), из которых на следующем этапе отбирают новые, более эффективные штаммы. И так далее.

Несмотря на явную ограниченность данного метода (приема), заключающуюся в низкой частоте возникновения мутантов, возможности его рано считать полностью исчерпанными. Процесс селекции наиболее эффективных продуцентов значительно ускоряется при использовании метода индуцированного мутагенеза. В качестве мутагенных воздействий применяются УФ, рентгеновское и гамма-излучения, определенные химические вещества и др. Однако и этот прием также не лишен недостатков, главным из которых является его трудоемкость и отсутствие сведений о характере изменений, поскольку экспериментатор ведет отбор по конечному результату. Например, устойчивость организма к ионам тяжелых металлов может быть связана с подавлением системы поглощения данных катионов бактериальной клеткой, активацией процесса удаления катионов из клетки или перестройкой системы (систем), которая подвергается ингибирующему действию катиона в клетке. Естественно, знание механизмов повышения устойчивости позволит вести направленное воздействие с целью получения конечного результата за более короткое время, а также селектировать варианты, лучше подходящие к конкретным условиям производства.

Таким образом, тенденцией сегодняшнего дня является сознательное конструирование штаммов микроорганизмов с заданными свойствами на основе фундаментальных знаний о генетической организации и молекулярно-биологических механизмах осуществления основных функций организма. Короче говоря, применение перечисленных подходов в сочетании с приемами классической селекции является сутью современной селекции микроорганизмов-продуцентов. Селекция микроорганизмов для микробиологической промышленности и создание новых штаммов часто направлены на усиление их продукционной способности, т.е. образование того или иного продукта. Решение этих задач в той или иной степени связано с изменением регуляторных процессов в клетке, поэтому в настоящем разделе имеет смысл несколько задержаться на возобновлении сведений о регуляции биохимической активности бактериальной клетки.

Как известно, изменения скорости биохимических реакций у бактерий может осуществляться по крайней мере двумя путями. Один из них очень быстрый (реализующийся в течение секунд или минут) заключается в изменении каталитической активности индивидуальных молекул фермента. Второй, более медленный (реализуется в течение многих минут), состоит в изменении скоростей синтеза ферментов. В обоих механизмах используется единый принцип управления системами – принцип обратной связи, хотя существуют и более простые механизмы регуляции активности метаболизма клетки.

Самый простой способ регуляции любого метаболического пути основывается на доступности субстрата или наличии фермента. Действительно, снижение количества субстрата (его концентрации в среде) приводит к снижению скорости потока конкретного вещества через данный метаболический путь. С другой стороны, повышение концентрации субстрата приводит к стимулированию метаболического пути. Поэтому, независимо от каких-то иных факторов, наличие (доступность) субстрата следует рассматривать как потенциальный механизм любого метаболического пути. Иногда эффективным средством повышения выхода целевого продукта является увеличение концентрации в клетке какого-либо определенного предшественника.

Аналогичный эффект может быть получен и в результате повышения концентрации ферментов, что достигается, например, амплификацией генов, контролирующих синтез соответствующего фермента. Наиболее распространенным способом регуляции активности метаболических реакций в клетке является регуляция по типу ретроингибирования. Биосинтез многих первичных метаболитов характеризуется тем, что при повышении концентрации конечного продукта данного биосинтетического пути угнетается активность одного из первых ферментов этого пути.

Впервые о наличии такого регуляторного механизма было сообщено в 1953 г. A. Novik и L. Szillard, исследовавшими биосинтез триптофана клетками E. coli. Заключительный этап биосинтеза данной ароматической аминокислоты состоит из нескольких, катализируемых индивидуальными ферментами стадий. Указанными авторами было обнаружено, что у одного из мутантов E. coli с нарушенным биосинтезом триптофана добавление данной аминокислоты (являющейся конечным продуктом этого биосинтетического пути) резко тормозит накопление одного из предшественников – индол глицерофосфата в клетках. Уже тогда было высказано предположение, что триптофан ингибирует активность какого-то фермента, катализирующего образование индол глицерофосфата.

Несколько позднее было четко установлено, что таким чувствительным к триптофану ферментом является антранилатсинтетаза, которая катализирует более раннюю реакцию триптофанового пути – образование антранилата из хоризмата и глутамина. Этот факт был экспериментально обоснован в опыте, когда добавление триптофана в клеточные экстракты E. coli, содержащие фермент антранилатсинтетазу и его субстраты (хоризмат и глутамин), приводило к резкому ингибированию образования антранилата. Более того, было однозначно продемонстрировано, что активность антранилатсинтетазы подавляется только триптофаном и никакие другие метаболиты клетки подобного действия не оказывают. Существует мнение, что регуляция по типу ретроингибирования является общим свойством клеточного метаболизма.

Более тщательное изучения механизма ингибирования активности фермента метаболитами этого же пути, проведенное в условиях in vitro, показало, что метаболит, являющийся ингибитором, специфически связывается с участком молекулы фермента, обладающим высокой степенью сродства к данному ингибитору и абсолютно отличающимся от активного центра фермента (т. е. не перекрывающимся с каталитическим центром). Этот участок получил название аллостерического центра (от греч. "аллос" – другой, "стерос" – пространственный), а сами ферменты, обладающие подобным центром, стали называться аллостерическими ферментами. Аллостерические ферменты представляют собой олигомеры, состоящие из взаимодействующих между собой нескольких одинаковых или различающихся субъединиц. При взаимодействии фермента с ингибитором конформация его молекулы изменяется, активный центр при этом также претерпевает изменения, приводящие к утрате каталитической способности фермента. При мутационном изменении аллостерического центра (центра взаимодействия с ингибитором) чувствительность к ингибитору утрачивается и фермент сохраняет свою активность, обеспечивая требуемый для синтеза конечного продукта этап биосинтетического пути.

Зная точно механизм регуляции синтеза интересующего продукта, участвует ли в регуляции механизм ретроингибирования, можно пытаться получить более активный продуцент данного соединения. Для отбора таких продуцентов используют структурные аналоги метаболитов, по отношению к которым селектируют резистентные варианты. Например, 5-метилтриптофан, аналог триптофана, так же как и триптофан, ингибирует активность антранилатсинтетазы, но не заменяет собой триптофан в клеточном метаболизме, т. е. не способен включаться в клеточные белки без потери последними биологической активности. Вследствие этого данный структурный аналог необходимого метаболита задерживает рост бактерий, если он добавлен в питательную среду, Некоторые мутанты, устойчивые к ингибирующему действию 5-метилтриптофана, способны синтезировать значительные количества триптофана и выделять его во внешнюю среду, а антранилатсинтетаза у них оказывается нечувствительной к триптофану, т. е. не подвержена ретроингибированию этой аминокислотой. Такой методический прием часто используется в селекции продуцентов аминокислот, нуклеотидов и витаминов.

Если же необходимо добиться накопления (продукции) какого-нибудь промежуточного продукта биосинтетического пути, то следует получить мутант с блокированным за этим продуктом этапом. Такой мутант будет зависимым от наличия в среде выращивания вещества, являющегося продуктом заблокированного этапа, либо конечного продукта данного биосинтетического пути.

Давно установлено, что из тысяч ферментов, синтезируемых растущими клетками, одни образуются постоянно и независимо от состава питательной среды, в то время как другие появляются лишь тогда, когда в среде присутствует субстрат их действия. Первые называются конститутивными ферментами (это ферменты гликолиза и др.), вторые относятся к адаптивным или индуцибельным ферментам. Так, клетки E. coli, растущие на среде с глюкозой, обладают следовыми количествами ферментов метаболизма лактозы, а также многих других источников углерода, которые способны усваивать клетки данного микроорганизма.

Но если эти же клетки перенести на среду с лактозой, являющейся в данном случае единственным источником углерода и энергии, то уже через 1–2 минуты можно зарегистрировать повышение активности β-галактозидазы, ключевого фермента в утилизации лактозы. Этот фермент гидролизует лактозу до глюкозы и галактозы. В течение следующего непродолжительного периода (равного 20–180 минутам) активность β-галактозидазы повышается примерно в 1000 раз по сравнению с исходным уровнем. Иными словами, имеет место выраженная индукция фермента, которая может быть определена следующим образом: Индукция фермента – это относительное увеличение скорости его синтеза в ответ на появление в среде культивирования определенного химического соединения, называемого индуктором. Часто великолепными индукторами являются неутилизируемые аналоги субстратов. Например, для β-галактозидазы таким веществом служит изопропил-β – D-тио-галактопиранозид (ИПТГ) неметаболизируемый аналог лактозы. С другой стороны, не всегда субстрат является индуктором синтеза соответствующего ему фермента. Так, лактоза, прежде чем выступить в роли индуктора, должна сначала превратиться в свой изомер аллолактозу (под действием β-галактозидазы).

Механизм генетической регуляции процесса индукции ферментов был расшифрован в экспериментах на кишечной палочке при изучении синтеза упоминавшегося фермента утилизации лактозы-β-галактозидазы.

В 1961 г. F. Jacob и J. Monod на основании результатов генетического и биохимического изучения процесса утилизации лактозы бактериями E.coli К 12 сформулировали концепцию, получившую широкую известность как "модель оперона". В соответствии с этой моделью данная система регуляции состоит из четырех компонентов: структурных генов (детерминирующих структуру ферментов), гена-регулятора, оператора и промотора. Ген-регулятор определяет структуру белка-репрессора, способного связываться с оператором, который, в свою очередь, контролирует функционирование прилежащих к нему структурных генов.

Промотор представляет собой область для связывания с ферментом транскрипции – РНК-полимеразой. Если белок-репрессор связан с оператором, то РНК-полимераза не может перемещаться на промотор и синтез информационной РНК не может осуществляться. Результатом является отсутствие синтеза соответствующих ферментов.

Первым из подробно изученных оперонов является лактозный оперон кишечной палочки. Авторы концепции предположили, что репрессор является аллостерическим белком, обладающим двумя специфическими центрами, один из которых характеризуется u1089 сродством к нуклеотидной последовательности области оператора, а другой – к молекуле индуктора. Взаимодействие индуктора с репрессором снижает сродство последнего (вследствие изменения центра связывания с оператором) к оператору, результатом чего является освобождение оператора. Репрессор lac-оперона выделен в чистом виде и состоит из четырех идентичных субъединиц (общая молекулярная масса равна 150 000 дальтон). Каждая субъединица взаимодействует с одной молекулой индуктора (т. е. требуется четыре молекулы индуктора, чтобы инактивировать репрессор).

Репрессор в чистом виде характеризуется исключительно высоким сродством к оператору и эффективно связывается с нуклеотидной последовательностью lac-оператора в условиях in vitro. В присутствии индуктора связывание нарушается. Изложенные результаты выполненных экспериментов являются веским подтверждением гипотезы Jacob и Monod, которая в настоящее время считается полностью доказанной.

Известно, что мутации в последовательностях гена-регулятора или оператора приводят в определенных случаях к нарушению либо образования полноценного репрессора, либо к нарушению его сродства к оператору. И в том, и в другом случае потребность в индукторе для запуска синтеза информационной РНК, а следовательно, и соответствующих ферментов, исчезает. Подобные мутанты (или мутации) называются конститутивными, поскольку синтез ферментов осуществляется постоянно. Получение конститутивных мутантов имеет важное значение в селекции определенных штаммов промышленных микроорганизмов.

Концепция оперона применима и к процессу репрессии ферментов. Отличием от индуцибельных систем в данном случае является наличие в таких оперонах не активного репрессора (апорепрессора), который в одиночку не способен взаимодействовать с оператором, но может активироваться конечным продуктом (корепрессором) с образованием активного репрессора.

Уже отмечалось, что с помощью аналога триптофана (5-метилтринтофана) можно получить устойчивые u1082 к ингибирующему действию триптофана мутанты, характеризующиеся повышенной продукцией данной аминокислоты. У некоторых из этих мутантов нарушен процесс ретроингибирования антранилатсинтетазы; у других – координированно дерепрессированы ферменты пути биосинтеза триптофана (т. е. ферменты триптофанового оперона). Генетический анализ показал, что у таких мутантов поврежден ген-регулятор, располагающийся на значительном расстоянии от контролируемых им генов триптофанового оперона. Такие мутанты являются конститутивными вследствие либо полного отсутствия репрессора, либо в результате невозможности последнего активироваться триптофаном.

Таким образом, изменяя регуляцию индуцибельных и репрессибельных оперонов, существует возможность повышать продукционную активность определенных промышленных штаммов-продуцентов. Уместно отметить, что структурные гены одного метаболического пути не всегда объединены в единый оперон (наподобие лактозному), однако это не мешает их регуляции с помощью индукции или репрессии. Так, например, гены E. coli, детерминирующие структуру ферментов, обеспечивающих биосинтез аргинина, располагаются в различных областях хромосомы, но все контролируются одним и тем же геном-регулятором. Такая система образует регулон. Другим показательным примером является SOS-регулон, гены которого детерминируют структуру более десятка различных белков и ферментов, участвующих в репарации повреждений ДНК клетки. Все эти структурные гены регулируются одним репрессором – продуктом гена lехА. Опероны и регулоны, контролирующие взаимосвязанные физиологические функции обнаружены у всех генетически изученных видов бактерий.

Очень важным регуляторным элементом любого оперона является область ДНК, именуемая промотором. Этот участок оперона обеспечивает взаимодействие (связывание) с РНК-полимеразой для начала транскрипции (т. е. синтеза молекулы информационной РНК). От особенностей промотора зависит эффективность u1090 транскрипции. Мутации в области промотора, изменяя его активность, могут повышать или понижать экспрессию оперона. Данное свойство промоторов также используется в создании более активных продуцентов.

Большие перспективы в селекции продуцентов открывает генетическая инженерия, методы которой позволяют заменять регуляторные области катаболических оперонов на более эффективные промоторы, повышающие продукцию клетками биологически активных веществ и обеспечивающие новые возможности контроля активности генов.

Само собой разумеется, что это не единственные способы повышения продуктивности бактерий за счет изменения регуляторных механизмов.

Объектами биотехнологии, в том числе генетической инженерии, являются:

а) микроорганизмы: грибы, бактерии, вирусы, простейшие и др.;

б) клетки растении, реже животных;

в) биологически активные вещества специального назначения – ферменты;

г) плазмиды.

Мир микроорганизмов чрезвычайно разнообразен. По мере их открытия и изучения они были распределены на следующие группы:

1. Бактерии – Schizomycetes – грибы-дробянки (от лат. Schizo – расцепляю, mycetes – грибы);

2. Лучистые грибы – Actinomycetes (от лат. Actino - луч);

3. Нитчатые грибы – Trichomycetes (от греч. Trichos – волос) ;

4. Дрожжевые грибы – Blastomycetes (от греч. blastos - почка, размножение почкованием);

5. Сине-зеленые водоросли – Cyanophyta, они же цианобактерии – Сyanobacteria;

6. Спирохеты – Spirochaena (от греч. Spira - спираль и chaita - волос);

7. Простейшие – Protozoa;

8. Риккетсии – Rickettsia;

9. Микоплазмы – Mycoplasma;

10. Вирусы;

11. Плазмиды.

Микроорганизмы, применяемые в промышленной микробиологии, то есть биотехнологии можно условно классифицировать следующим образом:

  1. Некоторые водоросли – Aldaе;
  2. Простейшие – Protozoa;
  3. Грибы – Mucor: а) Actinomycetes;

б) Streptomycetes;

в) Ascomycetes;

г) Oomycetes.

Грибы Mucor делятся на:

а) плесневые – Penicillium; относятся к сапрофитным (условно-патогенным)

б) дрожжевые – Aspergillus; tº = 23 – 260С, аэробы

в) дрожжеподобные – Candida; патогенные (вызывают кандидозы)

г) дрожжи – Saccharomycetes.

Грибы выращивают (для сохранения культуры) на питательных средах Сабуро, Чапека-Докса, жидком сусле или сусло-агаре при рН ниже 7,0. Грибы способны размножаться при рН от 3,0 до 10,0. Оптимальными являются параметры: рН 6,0-6,5, t = 25-330 С, для дрожжевых и дрожжеподобных грибов – 36-370 С. Спорообразованию способствуют снижение влажности питательной среды и уменьшение в ней содержания белков и углеводов. Витамины, некоторые аминокислоты и микроэлементы для различных грибов являются важными факторами роста.

Поскольку большинство грибов относятся к аэробам, они вырастают в виде пленок на поверхности жидких сред, а на твердых средах образуют вначале бесцветные, а затем, как правило, пигментированные колонии. Размеры колоний зависят от вида гриба, скорости его роста и размножения, состава питательной среды.

Грибы имеют ряд признаков, присущих клеткам животных организмов. Для них характерны гетеротрофный тип питания и потребность в витаминах. Они образуют мочевину и синтезируют гликоген (а не крахмал) в качестве резервного гомогликана, содержат хитин.

Грибы – бесхлорофилльные, гетеротрофные аэробные или факультативно-анаэробные микроорганизмы. Многие из них растут в течение 1–5 суток (иногда и более) на минимальных по составу ингредиентов питательных средах, включающих приемлемый органический источник углерода (н-р, олигосахара), неорганический источник азота в форме нитратов или аммонийных солей, при исходном значении рН 6,0-6,5.

Грибы чаще размножаются с помощью спор, а также вегетативно, образуют мицелий.

Бактерии. Энтеробактерии. Это семейство включает большую группу условно-патогенных патогенных палочек, средой обитания большинства из которых является кишечник человека и животных. Энтеробактерии: Escherichia, Shigella, Salmonella, Klebsiella, Proteus, Yersinia - хорошо растут на простых питательных средах, продуцируют сахаролитические, протеолитические и другие ферменты, определение которых имеет таксономическое значение.

Род Escherichia назван именем Т. Эшериха, который в 1885 г. впервые выделил и подробно описал бактерии, названные кишечной палочкой – Esch. сoli.

Esch. сoli, размножаясь при tº = 37º C на плотных средах, образуют S- и R- колонии. В жидких средах дают помутнение, затем осадок. Продуцируют ферменты, расщепляющие углеводы, белки и другие соединения.

Азотфиксирующие бактерии – Clostridium pasteurianum (анаэробы) – были открыты в 189 году С.Н. Виноградским. К ним относятся некоторые виды Рseudomonas, Bacillus, Rhizobium, цианобактерий.

Антибиотикопроизводящие грибы:

а) пенициллины производят плесневые грибы рода Рenicillium (открыты в 1940 г.);

б) стрептомицин производят некоторые виды Асtinomyces griseus (препарат был предложен в

1944 г. С. Ваксманом);

в) цефалоспорины производят некоторые виды грибов рода Cephalosporium и другие.

Антибиотики, вырабатываемые одними микроорганизмами, подавляют рост и размножение других видов микроорганизмов (бактериостатическое действие). Механизмы микробного антагонизма различны; они могут быть связаны с конкуренцией за кислород и питательные вещества, с изменением рН среды в сторону, неблагоприятную для конкурента и т.п.

Наиболее важным объектом биотехнологии, в частности молекулярной биологии и генетической (генной) инженерии являются плазмиды бактерий как наипростейшие. Имея ряд сходств с вирусами, плазмиды тем не менее существенно от них отличаются.

Главные отличия плазмид бактерий от вирусов:

1. Геном плазмид представлен только двунитевой ДНК (которую в молекулярной биологии научились расщеплять). У вирусов имеется более 10 вариантов РНК- и ДНК-геномов.

2. Плазмиды, в отличие от вирусов и других микроорганизмов, вообще не имеют никакой оболочки. Они представляют собой «голые» геномы. Это главная биологическая особенность плазмид.

3. В связи с отсутствием белковой оболочки размножение плазмид происходит только путем саморепликации их ДКН и не требуют синтеза структурных белков и процессов самосборки (вирусы имеют оболочки).

4. Средой обитания вирусов являются клетки бактерий, растений, животных и человека. Среда обитания плазмид – только бактерии.

5. В отличие от вирусов, плазмиды обладают системами генов, которые наделяют их способностью к самопереносу или к мобилизации на перенос из клетки в клетку.

6. Плазмиды и вирусы отличаются друг от друга и по последствиям, к которым приводит инфицирование ими клеток:

· заражение вирусом часто приводит к подавлению функционирования клеточного генома. Вирулентный (токсичный) вирус размножается в клетке и вызывает ее гибель или нарушает нормальное функционирование;

· плазмиды, проникая в бактериальную клетку, не размножаются в ней бесконтрольно и не подавляют функции бактериальной хромосомы, а сосуществуют с ней и сами контролируют образование числа возможных своих копий на хромосому клетки. То есть в плазмидах осуществляется контроль равномерного распределения (по одной) дочерних плазмид в дочерние бактериальные клетки не рандомически (случайно), а с помощью генетического механизма;

· в отличие от вирусов, плазмиды не только не вызывают гибели клеток, которые являются для них естественной средой обитания, а, наоборот, очень часто наделяют их важнейшими дополнительными (селективными) свойствами, то есть плазмиды своим присутствием обеспечивают размножение бактерий в неблагоприятных для них условиях (например, в присутствии лекарственных препаратов), таким образом обеспечивая собственное существование.

Благодаря этим отличиям от вирусов, плазмиды нашли применение в генной инженерии для генетической перестройки, то есть используются в качестве векторов для клонирования различных генов в бактерии.

Методы биотехнологии:

1. Поверхностное культивирование на твердых и полутвердых питательных средах с целью:

а) получения посевного материала;

б) для сохранения культуры в течение длительного срока;

в) наращивания каллусной биомассы при культивировании ткани или клеток растений;

2. Крупномасштабное глубинное культивирование биологических объектов в специальном режиме для получения целевых продуктов (ферментация).

 

При периодическом типе культивирования рост клеточной популяции подразделяется на несколько фаз:

1) лаг-фаза, или фаза задержанного роста, при которой клетки растут медленно и адаптируются к новой среде обитания в объеме ферментора;

2) экспоненциальная фаза, характеризующаяся интенсивным делением клеток и сбалансированностью роста всей популяции;

3) фаза замедленного роста, связанная с исчерпанием питательных субстратов и накоплением токсических продуктов метаболизма;

4) стационарная фаза, при которой прирост новых клеток количественно равняется числу погибающих;

5) фаза отмирания, характеризующаяся прогрессирующей гибелью клеток.

Стадия культивирования микроорганизмов является наиболее сложной и ответственной.

Рост и культивирование биомассы требуют следующих условий:

· жизнеспособности посевного материала;

· наличия источника энергии (тепла);

· достаточного количества соответствующей питательной среды;

· необходимых физико-химических условий для жизнедеятельности.

С начала 1950-х гг. вирус полиомиелита для производства вакцины выращивали в культуре клеток млекопитающих, в том числе фибробластов эмбриона человека. С тех пор фибробласты эмбриона стали незаменимы для выделения и выращивания ряда других вирусов, при производстве высокоспецифичных белков (антителе, интерферонов), в исследованиях рака и противовирусной химиотерапии.

Культуры, приготовленные непосредственно из тканей организма (эмбриональных или тканей новорожденных), называют первичными культурами. В большинстве случаев клетки первичной культуры переносят из культуральной чашки и используют для получения большого количества вторичных культур, которые можно последовательно перевивать в течение недель или месяцев. Разные типы клеток нуждаются в различных питательных веществах, а также в одном или нескольких белковых факторах роста.

Клеточные линии можно использовать для получения клонов, которые происходят из одной клетки-предшественника.

Биотехнология использует методы поверхностного и глубинного культивирования микроорганизмов.

При поверхностном культивировании (в монослое) суспензию клеток получают обработкой измельчённой ткани эмбриона трипсином. Клетки в такой суспензии, оседая на плотной поверхности сосуда с культуральной средой, становятся плоскими и делятся, образуя монослой на поверхности сосуда. Обычно при этом способе культивирования пользуются цилиндрическими бутылями, которые медленно вращаются вдоль своей длинной оси. Рост клеток и выход биомассы можно увеличить, добавив к суспензии носитель- микроскопические гранулы из инертного синтетического полимера, на которых клетки закрепляются и пролиферируют. Суспензионные культуры можно получать в сосудах объёмом до 1000 л при перемешивании.

Преобладающим является глубинный метод культивирования, предполагающий возможность использования всего объема питательной среды.

На рост и развитие микроорганизмов влияют внутри- и внеклеточные факторы. К внутриклеточным факторам относятся: структура клетки, механизмы метаболизма и генетические характеристики. Внеклеточные (внешние) факторы, т.е. условия внешней среды клетки, являются основными регуляторными факторами биотехнологии.

<== предыдущая лекция | следующая лекция ==>
| Выбор биотехнологических объектов

Дата добавления: 2014-01-03; Просмотров: 765; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.161.106.81
Генерация страницы за: 0.194 сек.