Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обоснование алгоритма




Пусть мы находимся в некоторой вершине . В исходном графе степень вершины четное число, поэтому после зачеркивания ребер, по которым мы приходили и уходили из вершины , ее степень — нечетна. Следовательно, существует, по крайней мере, одно незачеркнутое ребро, инцидентное вершине . Если это ребро — единственное, инцидентное вершине , то оно, в силу замечания в алгоритма, не может быть «перешейком», и по нему можно покинуть вершину .

Пусть ребер, инцидентных вершине нечетное число, большее единицы. Докажем, что среди них хотя бы одно ребро не является перешейком. Допустим противное: все ребра, инцидентные вершине перешейки. Удалим одно из этих ребер, такое, чтобы вершина и оказались в разных компонентах связности. Такое ребро существует, так как в противном случае вершины и были бы связаны более чем одной простой цепью. Это означало бы, что существует простой цикл, содержащий вершины и . Но ребра, входящие в простой цикл, не могут быть перешейками.

Рассмотрим компоненту связности , содержащую вершину (и не содержащую вершину ). В графе степени всех вершин, в том числе и вершины четные числа. Следовательно, в графе существует эйлеров цикл. Ребра, входящие в цикл, не могут быть перешейками.

Итак, наше допущение ведет к противоречию. Более того, мы убедились, что среди ребер, инцидентных вершине в графе, полученном из графа удалением пройденных ребер, лишь одно может быть перешейком.

Таким образом, доказано, что невозможность выполнить предписания алгоритма может возникнуть только в вершине , если попасть в нее, по крайней мере, во второй раз. В отличие от других вершин степень вершины при -м попадании в нее — четна. Если эта степень равна нулю, алгоритм перестает работать.

Докажем, что в этом случае эйлеров цикл уже построен. В самом деле, в силу правила любое ребро может войти в цикл не более одного раза. В силу правил 4°, 5° — пройдены все ребра. Действительно, непройденные ребра определяют в графе компоненты связности. Если эти компоненты можно связать с вершиной цепью из более чем одного зачеркнутого ребра, то среди этих ребер наверняка одно — перешеек; если одним ребром, то была возможность выбора ребра, не ведущего в вершину .

 




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 394; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.