Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Жидкокристаллические панели

Жидкими кристаллами (ЖК) называются вещества, одновременно обладающие некоторыми свойствами жидкостей, например текучестью, и в то же время имеющие упорядоченную структуру расположения молекул, подобную кристаллическим решеткам. Жидкие кристаллы обладают способностью изменять свои оптические свойства под воздействием электрического поля.

Различные устройства отображения информации, использующие в своей основе жидкие кристаллы, получили название ЖК-панелей или ЖК-матриц. Различают два типа ЖК-панелей – пассивные, или отражательные, и активные, или просветные. Пассивные панели переотражают свет от внешнего источника. Панели подобного типа используются, например, в карманных электронных играх и электронных часах. В активных панелях за ЖК панелью находится люминесцентная лампа, а сама панель работает на просвет – принцип диапроекции. В последнее время бурно развиваются технологии их использования в телевизионных приемниках.

В простейшем случае телевизионная ЖК-панель представляет собой две плоскопараллельные стеклянные пластины, на которые нанесены прозрачные электроды, соответствующие единичным элементам изображения (рис. 181). Расстояние между пластинами составляет микроны. В этом просвете находится жидкость, обладающая свойствами жидкого кристалла. С наружной стороны на каждую из пластин наложены поляроиды, плоскости поляризации которых повернуты на 90о одна относительно другой. Поляроидами называются прозрачные пленки, превращающие неполяризованный свет в линейно поляризованный. При подаче напряжения на электроды меняются оптические свойства ЖК-вещества, что приводит к изменению угла поляризации проходящего через него света. Внешне это проявляется в изменении прозрачности ЖК-панели при изменении подаваемого на нее напряжения. При снятии напряжения через некоторое время прозрачность ЖК-панели восстанавливается. Изменяя величину напряжения, подаваемого на каждую ячейку, можно изменять степень ее прозрачности и таким образом получать общее изменяющееся изображение. Для получения цветного изображения элементарные ячейки вдоль строки покрываются чередующимися светофильтрами трех основных цветов. Каждая ячейка управляется сигналом цветовой составляющей, соответствующей покрывающему ее светофильтру. Для зрителя, находящегося на достаточном от панели расстоянии, соседние ячейки, излучающие свет трех основных цветов, воспринимаются как общий источник света определенной окраски.

Рис. 181. Технология ЖК-дисплея. В зависимости от ориентации жидких кристаллов белый поляризованный свет источника света либо пропускается ими, либо нет. Светофильтр отвечает за окрашивание изображения

ЖК-панели широко применяются в миниатюрных и проекционных телевизорах, а также в качестве компьютерных мониторов. К недостаткам ЖК-панелей можно отнести ограниченный угол обзора и конечную скорость изменения состояния жидкокристаллического вещества, в результате чего отображение быстро меняющихся изображений происходит с заметной задержкой. Уровень вредных излучений и потребляемая мощность ЖК-панели гораздо меньше, чем у кинескопов.

OLED-технология (Organic Light Emitting Diode) – органический светоизлучающий диод, являет собой эволюционное развитие технологии использования неорганических светодиодов (LED). В новых дисплеях используется эффект свечения некоторых материалов при протекании через них электрического тока. Простейший OLED-дисплей состоит из слоя электролюминесцентного материала, располагающегося между двумя электродами. При подаче на электроды напряжения заряженные частицы движутся через органический слой до тех пор, пока они могут рекомбинироваться в экситоны (пары «электрон – дырка» – в полупроводниковых приборах). При этом избыток энергии излучается в виде светового импульса. Чтобы видеть излучаемый свет, один из электродов должен быть прозрачным (рис. 182).

Рис. 182. Технология OLED-дисплея. OLED сам является источником света: в активном слое при приложении к нему электрического напряжения (в зависимости от применяемого материала) возникает свечение нужного цвета

Экситон (от лат. excito – «возбуждаю») – квазичастица, соответствующая электронному возбуждению, мигрирующему по кристаллу, но не связанному с переносом заряда и массы. Экситон может быть в виде связанного состояния электрона проводимости и «дырки», расположенных или в одном узле кристаллической решетки (экситон Френкеля), или на расстояниях, значительно больших междуатомных (экситон Ванье – Мотта). Понятие экситона используется при объяснении оптических и других свойств полупроводников и диэлектриков (Большой энциклопедический словарь).

Цвет излучаемого света зависит от используемого материала (могут использоваться как соединения окиси алюминия, так и бикомпонентные полимеры – активные материалы, состоящие из длинных полимерных цепочек). Они хорошо растворимы и могут наноситься слоями на подложку.

Потоки электронов и «дыр», как правило, не находятся в равновесии. Это значит, что доминирующий вид носителей зарядов пронизывает всю толщу материала, не находя частицы с противоположным зарядом. Следствием этого является высокое энергопотребление и низкая эффективность работы дисплея. Лучший результат достигается в том случае, когда вместо одного органического слоя используются два различных слоя: в то время, как граничащий с анодом слой поставляет «дыры», слой, прилегающий к катоду, оптимизирован на создание и транспортировку электронов. На границе слоев частицы как бы тормозятся и поджидают, пока не прибудет частица с противоположным зарядом. За счет этого существенно повышается КПД всей системы. Процесс рекомбинации в тонком пограничном слое вызывает свечение мельчайших точек. Еще большая эффективность достигается при использовании трехслойного материала, когда два слоя, как и прежде, оптимизированы для переноса «дыр» и электронов, а третий, расположенный между ними, отвечает за качество люминесценции.

Принципиальное отличие от жидкокристаллического дисплея состоит в том, что OLED-экран сам является источником света. Дисплеи на органических светоизлу­чающих диодах лишены всех недостатков, присущих технологии ЖК-панелей.

<== предыдущая лекция | следующая лекция ==>
Плазменные панели | Проекционные телевизоры и видеопроекторы
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 2214; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.