Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цифровые электронные вольтметры

Принцип работы цифровых измерительных приборов основан на дискретном представлении непрерывных величин. Непрерывная величина x (t) – величина, которая может иметь в заданном диапазоне Д бесконечно большое число значений в интервале времени Т при бесконечно большом числе моментов времени (рис. 4.17, а). Величина может быть непрерывной либо по значению, либо по времени.

 

Рис. 4.17. Дискретизация и квантование непрерывной величины

 

Величину, непрерывную по значению и прерывную по времени, называют дискретизированной (рис. 4.17, б). Значения дискретизированной величины отличны от нуля только в определенные моменты времени.

Величину, непрерывную по времени и прерывную по значению, называют квантованной (рис. 4.17, в). Квантованная величина в диапазоне Д может принимать только конечное число значений. Непрерывная величина может быть дискретизированной и квантованной одновременно (рис. 4.17, г).

Процесс преобразования непрерывной во времени величины в дискретизированную путем сохранения ее мгновенных значений в моменты времени t 0, t 1, t 2, …, tn (моменты дискретизации) называют дискретизацией. Интервал D t между ближайшими моментами дискретизации называют шагом дискретизации.

Процесс преобразования непрерывной по значению величины в квантованную путем замены ее значений ближайшими фиксированными значениями x 1, х 2, …, хn называется квантованием. Разность D x между двумя детерминированными значениями называют шагом квантования.

При измерении отсчет значения величины x (t) производится в моменты дискретизации с точностью до ближайшего квантованного значения. Поэтому в общем случае полученное в результате квантования значение x изм отличается от действительного значения измеряемой величины. Понятно, что погрешность от замены действительного значения квантованным может быть снижена за счет уменьшения шага квантования.

Процесс измерения в цифровом вольтметре включает в себя дискретизацию, квантование и кодирование – получение по определенной системе правил числового значения квантованной величины в виде комбинации цифр (дискретных сигналов). Так, например, кодирование квантованных значений сигналов X 0изм, X 1изм, …, Xn изм (см. рис. 4.17, г) может быть осуществлено путем выработки в приборе в моменты дискретизации t 0, t 1, t 2, …, tn пакетов импульсов, с числом импульсов, равным количеству интервалов квантования.

Процесс аналого-цифрового преобразования составляет сущность любого цифрового прибора, в том числе и вольтметра.

В общем виде процесс преобразования измеряемого напряжения в интервале времени показан на рис. 4.18.

 

Рис. 4.18. Принцип преобразования напряжения в интервале времени

 

Преобразование осуществляется посредством сравнения измеряемого напряжения постоянного тока с линейно-изменяющимся напряжением (рис. 4.18) следующим образом.

Измеряемое напряжение Ux подается на один из входов сравнивающего устройства (СУ). При этом в момент времени t 1 импульсом Ut 1 от блока управления (БУ) запускается генератор линейно-изменяющегося напряжения (ГЛИН). В момент равенства напряжений от ГЛИН U Л и UX вырабатывается импульс Ut 2. Интервал времени Тх = t 2 t 1 оказывается пропорциональным значению измеряемого напряжения.

По виду измеряемой величины цифровые вольтметры подразделяются на вольтметры постоянного тока, переменного тока (средневыпрямленного или среднего квадратического значения), импульсные вольтметры – для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтметры, предназначенные для измерения напряжения постоянного и переменного тока, а также некоторых других электрических и неэлектрических величин (сопротивления, температуры и др.).

Схемные решения цифровых вольтметров определяются примененным методом аналого-цифрового преобразования. Получили распространение вольтметры с времяимпульсным, частотно-импульсным преобразованием, а также с поразрядным уравновешиванием.

<== предыдущая лекция | следующая лекция ==>
Электронные аналоговые вольтметры | Цифровой вольтметр с ГЛИН
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 622; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.