Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Клеточная теория живого




Лекция 8. Генетика и эволюция природы

Одним из крупнейших обобщений XIX в. стала клеточная теория, изложенная в трудах Т. Шванна, М. Шлейдена и Р. Вирхова. Совре­менная клеточная теория включает следующие положения:

• все живые организмы состоят из клеток (исключение составляют вирусы); клетки одноклеточных и многоклеточных животных и растительных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и основным проявлениям жизнедеятельности;

• все живые организмы развиваются из одной клетки или группы клеток; каждая новая клетка образуется в результате делениясходной (материнской) клетки;

• в сложных многоклеточных организмах клетки дифференциру ются, специализируясь по выполнению определенной функции;

• клетки объединены в ткани и органы, функционально связанные в системы, и находятся под контролем межклеточных, гуморальных и нервных форм регуляции.

Среди всего многообразия ныне существующих на Земле организмов выделяются вирусы, не имеющие клеточного строения; все остальные организмы представлены разнообразными клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический.

Клетки прокариотических организмов устроены сравнительно просто. В них нет морфологически обособленного ядра, единственная хромосома образована кольцевидной ДНК и находится в цитоплазме, мембранные органеллы отсутствуют (их функцию выполняют различные впячивания плазматической мембраны). К надцарству прокариот относят бактерии. Одну из групп фотосинтезирующих бактерий (сине-зеленые водоросли или цианобактерии) раньше относили к водорослям, однако в настоящее время их рассматривают как специфическую группу бактерий.

Большинство современных живых организмов относится к одному из трех царств – растений, грибов и животных, объединяемых в над-царство эукариот.

Для растительных клеток характерно наличие толстой целлюлоз­ной клеточной стенки, различных пластид, крупной центральной ва­куоли, смещающей ядро к периферии. Клеточный центр высших рас­тений без центриоли. В качестве резервного питательного углевода клетки растений запасают крахмал.

В клетках грибов клеточная оболочка содержит хитин, в цитоплаз­ме имеется центральная вакуоль, отсутствуют пластиды. Главным ре­зервным полисахаридом является гликоген.

Животные клетки имеют, как правило, тонкую клеточную стенку, не содержат пластид и центральной вакуоли, для клеточного центра характерна вакуоль. Запасным углеводом является гликоген.

В зависимости от количества клеток, из которых состоят организ­мы, их делят на одноклеточные и многоклеточные. Одноклеточными являются все прокариоты, а также простейшие, некоторые зеленые водоросли и грибы. Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.

Эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра. Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана или плазмолемма. Мембраны состоят из белков и липидов (бимолекулярный слой), обладают свойством избирательной проницаемости (способны пропускать одни вещества и не пропускать другие), а также способностью само­произвольного восстановления целостности структуры. Углеводный компонент в составе клеточных оболочек разных клеток выражен в различной степени: в животных клетках он относительно тонок и называется гликокаликсом, в растительных клетках углеводный компонент сильно выражен и представлен целлюлозной клеточной стенкой.

Внутреннее содержимое клетки представлено цитоплазмой, состо­ящей из основного вещества, или гиалоплазмы (т.е. водным раствором неорганических и органических веществ), и находящихся в нем разнообразных внутриклеточных структур. Последние представлены включениями – относительно непостоянными компонентами, например запасными питательными веществами (зерна крахмала, белков, капли гликогена) или продуктами, подлежащими выведению из клетки (гра­нулы секрета); органоидами – постоянными и обязательными компо­нентами большинства клеток, имеющими специфическую структуру и выполняющими жизненно важные функции.

Рибосомы – структуры, состоящие из примерно равных по массе количеств рРНК и белка, представлены субъединицами: большой и малой. Функция рибосом – сборка белковых молекул.

Микротрубочки и микрофиламенты – нитевидные структуры, со­стоящие из различных сократительных белков, обусловливающие дви­гательные функции клетки.

Клеточный центр (центросома) состоит из двух центриолей, участвующих в формировании митотического веретена клетки. Каждая центриоль имеет вид полого цилиндра, стенка которого образована девятью триплетами микротрубочек.

К мембранным органоидам эукариотической клетки относят структуры с одинарной мембраной – эндоплазматической сетью (ЭПС), комплекс Гольджи, лизосомы, а также органоиды с двумя мембрана­ми – митохондрии и пластиды. По симбиотической гипотезе о проис­хождении эукариотической клетки митохондрии и пластиды являются потомками древних прокариот. Эти органеллы полуавтономны, так как обладают собственным аппаратом биосинтеза белка (ДНК, РНК, ферменты).

Эндоплазматическая сеть – разветвленная система полостей, трубочек и каналов, место синтеза белков и липидов, а также их транспорта внутри клетки. На мембране шероховатой ЭПС располагаются рибосомы (синтез белков). Мембраны гладкой ЭПС содержат фер­менты синтеза почти всех липидов.

Аппарат Гольджи состоит из дисковидных мембранных полостей и отшнуровывающихся от них микропузырьков. Попадающие в аппарат Гольджи белки и липиды сортируются, упаковываются в секре­торные пузырьки и транспортируются к различным внутриклеточным структурам или за пределы клетки. Мембраны аппарата Гольджи способны образовывать лизосомы.

Лизосомы выполняют функцию внутриклеточного переваривания макромолекул пищи и чужеродных компонентов, поступающих в клетку. Для осуществления этих функций лизосомы содержат около 40 ферментов, разрушающих белки, нуклеиновые кислоты, липиды, углеводы.

Митохондрии – важнейшие органоиды клетки, осуществляющие аэробное дыхание, в котором образуется основная часть молекул АТФ. Митохондрии называют энергетическими станциями клетки. Вну­тренняя мембрана образует многочисленные выросты кристы, пространство между ними заполнено матриксом, содержащим различные ферменты, нуклеиновые кислоты,

Митоз – универсальный способ деления эукариотических клеток, состоящий из четырех фаз: профазы, метафазы, анафазы и телофазы. При митозе образуются клетки с наследственной информацией, которая качественно и количественно идентична информации материн­ской клетки.

Амитоз – прямое деление ядра на две более или менее равные части, но дочерние клетки получают наборы, неидентичные материнскому. Таким способом делятся стареющие и патологически измененные клетки, а также клетки эндосперма и кожного эпителия.

Мейоз – своеобразный способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз является центральным звеном гаметогенеза у животных и спорогенеза у растений. Мейоз состоит из двух последовательных делений, которым предшествует однократная редупликация ДНК. После двух последовательных мейотических делений из одной клетки с диплоидным набором двухроматидных хромосом (1 n4с) образуются четыре клетки с гаплоидным набором однохроматидных хромосом (nс). Мейоз – основа комбинативной изменчивости, обеспечивает генетическое разнообразие гамет благодаря процессам кроссинговера (обмена участками между гомологичными хромосомами в профазе I мейотического деления), расхождения и комбинаторики отцовских и материнских хромосом.




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 441; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.