Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основы робототехники и роботизации промышленного производства




ПРОИЗВОДСТВА

АВТОМАТИЗАЦИИ И ИНФОРМАТИЗАЦИИ

14.1. Основы гибкой автоматизированной технологии

Гибкую автоматизированную технологию и созданные на ее основе гибкие автоматизированные производства, которые органически сочетают комплексную автоматизацию с всемерной экономией трудовых ресурсов, называют технологией XXI в.

Комплексная автоматизация предполагает такую организацию производственных процессов, которая соответствует технологии производства, а также требованиям равномерного, непрерывного и интенсивного использования всей технологической системы без участия человека при стабильном качестве выпускаемой продукции. Комплексность автоматизации проявляется в том, что она охватывает не только рабочие, но и вспомогательные элементы технологического процесса. Поэтому автоматизироваться должны не только основные процессы производства продукции, но и транспорт, складирование, проектирование и технологическая подготовка производства.

Необходимо отметить, что вытесняя физический труд из основных и вспомогательных производств, автоматизация ведет к увеличению затрат умственного труда, связанного с обеспечением этих производств, и прошлого труда. При этом, если умственный труд не будет охвачен собственными системами автоматизации, программирования, управления, то эффективность автоматизации производственных процессов будет низкой. Кроме того, автоматизация производства представляет собой вариант рационалистического развития, которое по своей сути ограничено (см. главу 3).

Учитывая вышеизложенное, можно сформулировать следующие принципы автоматизации производства.

1. Автоматизация должна носить комплексный характер и охватывать целостные технологические процессы.

2. Автоматизации должна охватывать не только сам технологический процесс, но и все, примыкающие к нему (транспорт, складирование, проектирование, технологическую подготовку производства).

3. Автоматизированные системы должны быть гибкими технологически и экономически. Технологическая гибкость подразумевает возможность изменения производительности системы при сохранении согласованной работы ее элементов (саморегулируемость системы), экономическая — способность к мно-


гократной смене номенклатуры выпускаемой продукции с наименьшими затратами при неизменности основного технологического оборудования.

4. Автоматизация должна быть обеспечена высокой надежностью используемого оборудования.

Современную концепцию автоматизации производства в наибольшей мере отражают представления о гибких автоматизированных производствах.

Гибкое автоматизированное производство — производство, которое позволяет за короткое время, при минимальных затратах, на том же оборудовании, не прерывая производственного процесса и не останавливая оборудования, по мере необходимости переходить на выпуск новой продукции произвольной номенклатуры.

По степени гибкости существуют четыре группы производств.

Первая группа предполагает жесткую технологию, когда оборудование предназначено для изготовления только одного вида деталей. По окончании выпуска оборудование не может использоваться для изготовления других изделий. Примером такого производства может служить технологический процесс штамповки.

Вторая группа основана на перестраиваемой технологии, когда при изменении отдельных компонентов оборудования или добавлении дополнительных технических устройств можно выпускать новые изделия. Пример такого производства — автоматическая линия из агрегатных станков.

Третья группа — переналаживаемые технологические процессы и оборудование. Примером может служить группа станков с числовым программным управлением (ЧПУ). Переналадка в данном случае требует короткой остановки (иногда до 5 мин.) для замены программы обработки изделия.

Четвертая группа основана на гибкой технологии производства и оборудовании, приспособленном для высокого уровня автоматизации. Для перехода на выпуск новой продукции никакой переналадки не требуется, а сам переход осуществляется в автоматическом режиме. Пример такого производства — интегрированные производственные системы с ЭВМ, управляющей ходом технологического процесса.

Третью и четвертую группы производств иногда называют программируемыми, так как для перехода с одного объекта производства на другой необходимо изменять управляющие программы, а не оборудование.

Гибкое автоматизированное производство имеет по сравнению с традиционными ряд преимуществ: высокую мобильность и сокращение сроков освоения новой продукции; высокие производительность и качество выпускаемой продукции; улучше-


ние условий труда; сокращение производственного цикла; снижение эксплуатационных затрат на производство и освоение новой продукции.

Основным звеном гибкого автоматизированного производства является гибкая производственная система (ГПС) — совокупность технологического оборудования и систем обеспечения его функционирования в автоматическом режиме. В свою очередь, ГПС структурно включает в себя как минимум:

• гибкий производственный модуль;

• роботизированный технологический комплекс;

• систему обеспечения функционирования ГПС.

Гибкий производственный модуль (ГПМ) представляет собой автономно функционирующую единицу технологического оборудования с программным управлением, предназначенную для производства изделий произвольной номенклатуры, автоматически осуществляющую все функции, связанные с изготовлением продукции.

Например, в технологии обработки металлов резанием в качестве ГПМ используют, как правило, станки типа «обрабатывающий центр». На них выполнение различных операций (точение, сверление, фрезерование и т.д.) обеспечивается при минимуме вспомогательных действий, связанных с установкой, закреплением, снятием обрабатываемой детали, переменой режущего инструмента и т.д. Один такой обрабатывающий центр заменяет 5—6 обычных металлорежущих станков.

Применение ГПМ целесообразно в условиях серийного и мелкосерийного производства. Они могут встраиваться в автоматизированную систему более высокого уровня.

ГПС, состоящую из нескольких производственных модулей объединенных автоматизированных систем управления, в которой технологическое оборудование расположено в принятой последовательности технологических операций, называют гибкой автоматизированной линией.

Роботизированный технологический комплекс (РТК) представляет собой автономно функционирующую совокупность технологического оборудования, промышленного робота и средств их оснащения. В отличие от гибкого производственного модуля РТК предназначен для выполнения вспомогательных действий.

Система обеспечения функционирования ГПС — комплекс ЭВМ, программного обеспечения и центрального пульта управления, обеспечивающий координацию и согласование всех составных частей ГПС.

Основными технологическими характеристиками гибких автоматизированных производственных систем являются:

• способность работать без участия человека;


автоматическое выполнение рабочих и вспомогательных действий;

• простота наладки;

• гибкость, удовлетворяющая требованиям мелкосерийного производства;

• высокая экономическая эффективность при правильной эксплуатации.

Совокупность гибких производственных систем, образующих законченную технологическую цепочку обработки изделия, с автоматизированными складами исходных материалов и готовых изделий, системой обслуживания станков и инструментов представляет собой более высокую ступень — гибкое автоматизированное производство (ГАП) (рис. 14.1).

I — автоматизированная система обработки деталей;

II — автоматизированная система складирования и транспортирования

заготовок и деталей; III — автоматизированная система

инструментального обеспечения, IV — автоматизированная система

управления производством


ГАП является высокоинтенсивной и трудосберегающей формой производства, она сравнима по производительности с автоматической линией, а по гибкости — с универсальным оборудованием.

Широкое внедрение ГЛП является оптимальным путем интенсификации мелкосерийного производства с применением безлюдной технологии изготовления продукции.

Кроме того, как высший уровень автоматизации гибкое автоматизированное производство должно включать в себя полную автоматизацию проектирования и технологической подготовки производства.

Разработка и широкое применение гибкой автоматизированной технологии являются в настоящее время основной тенденцией развития современного промышленного производства. Однако необходимо еще раз подчеркнуть, что гибкое автоматизированное производство наиболее целесообразно разрабатывать под принципиально новые технологии, а не подстраивать под существующие.

Одним из важнейших факторов интенсификации производства является уменьшение доли ручного труда в технологических процессах, особенно на вспомогательных операциях, а также в случае выполнения вредных, тяжелых и опасных работ. В решении этой проблемы немаловажная роль отводится роботизации производства.

В общем случае роботизация является одним из направлений и составляющих элементов комплексной автоматизации производства и представляет собой использование промышленных роботов и их систем в промышленном производстве.

Промышленные роботы эффективно включаются в автоматические линии, становятся частью гибких автоматизированных производств, способны быстро и без существенных затрат перестраиваться на производство изделий различных видов, приспосабливаться к изменяющимся условиям производства.

Представляя собой новый вид рабочей машины, роботы могут эксплуатироваться изолированно или целыми комплексами, управляемыми ЭВМ. Особенно ценное достоинство промышленных роботов — способность к быстрой переналадке на изготовление новой продукции. Это свойство роботов важно для обрабатывающих отраслей промышленности, где около 50 % объема производства приходится на малые и средние партии. В условиях традиционного производства при изготовлении изделий небольшими партиями непосредственно чистое время механической

зва


обработки занимает 5 % общего рабочего времени, а остальное приходится на подготовку станка и деталей, настройку инструмента, крепление и снятие деталей и т.д. Применение промышленных роботов изменяет это соотношение и значительно повышает производительность обработки. Кроме того, использование роботов значительно экономит сырье, материалы при рациональной организации производственного процесса.

Широкое применение роботов не только в машиностроении, но и в других отраслях народного хозяйства, позволяет говорить о новом направлении в технологии — робототехнологии, которая представляет собой совокупность методов обработки, изменения состояния, свойств, формы предмета труда с использованием промышленных роботов или их комплексов на основных и вспомогательных стадиях процесса производства готовой продукции.

Классификация промышленных роботов. Современная общепринятая трактовка термина «промышленный робот» была принята XI Международным симпозиумом по промышленным роботам (Токио, 1981).

Промышленный робот — многократно программируемое многофункциональное устройство, предназначенное для манипулирования и транспортирования деталей, инструментов, специализированной технологической оснастки посредством программируемых движений, для выполнения разнообразных задач.

С точки зрения истории развития робототехники различают три поколения промышленных роботов:

• роботы первого поколения (программируемые роботы) характеризуются тем, что они выполняют совокупность жестко запрограммированных операций. Эти роботы «глухи», «немы» и «слепы»;

• роботы второго поколения (адаптивные роботы) используют сенсорную информацию об окружающей среде, чтобы корректировать свое поведение при выполнении производственной операции;

• роботы третьего поколения — интеллектуальные роботы, наделенные «здравым смыслом», «чувствами», способные распознавать разнообразные объекты внешнего мира, обладающие способностью действовать самостоятельно.

По уровню сложности Японская ассоциация промышленных роботов подразделяет их на шесть классов:

первый класс — ручные или дистанционно управляемые манипуляторы, т.е. устройства, непосредственно управляемые оператором-человеком;

второй класс — роботы с жесткой последовательностью перемещений (типа «взять-положить»). Их нельзя перепрог-

364'


раммировать на выполнение новой задачи, а надо переналаживать, как простые автоматизированные механизмы;

третий класс — программируемые манипуляторы, которые в отличие от ручных ряд функций выполняют в автоматическом режиме;

четвертый класс — роботы, программируемые обучением, т.е. обучаемые вручную, когда руку робота проводят по всему циклу заданной работы;

пятый класс — роботы с программным управлением, последовательность и условия работы которых задаются программой. С изменением программы возможно изменение последовательности действий робота;

шестой класс — роботы, способные воспринимать окружающую среду, реагировать на нее и исходя из полученной информации осуществлять определенные действия.

По роду деятельности промышленные роботы подразделяются на три группы:

основные (технологические), непосредственно выполняющие технологические операции (сборку, сварку, окраску и т.д.);

вспомогательные (подъемно-транспортные), занятые осуществлением операций складирования, перемещения, подачи заготовок и т.д.;

комбинированные, выполняющие действия роботов первых двух групп.

Основные и вспомогательные роботы по степени универсальности делятся на универсальные, специализированные и специальные.

Универсальные роботы предназначены для выполнения различных технологических операций и могут работать в различных технологических процессах с разнообразными видами оборудования.

Специализированные промышленные роботы выполняют однородные технологические операции и приемы в определенном параметрическом диапазоне (например, обслуживание штамповочного пресса или токарного станка).

Специальные роботы предназначены для выполнения только конкретной технологической операции или приема (например, сборочный робот для сочленения двух деталей или установки камня в часовой механизм).

На основе промышленных роботов создаются роботизированные технологические комплексы (РТК).

Различают следующие разновидности РТК:

манипуляционные, у которых основной исполнительный
орган оканчивается захватом или каким-либо инструментом;


мобильные (колесные, шагающие, гусеничные), используемые, как правило, в экстремальных условиях работы (в космосе, под водой, в полевых условиях и т.д.);

информационно управляющие, которые могут не иметь механически движущихся исполнительных устройств. Они следят за ходом протекания технологических процессов, обрабатывают информацию, поступающую из каких-либо внешних источников, и в случае необходимости вносят коррективы в протекание контролируемого технологического процесса.

Объединение группы РТК в одну технологическую цепочку изготовления какой-либо продукции позволяет создавать роботизированные автоматические линии (РАЛ). На одной такой линии могут производиться в автоматическом режиме обработка резанием, термообработка, сварка и т.д.

Достоинствами РЛЛ являются высокие производительность и качество выпускаемой продукции, совмещение рабочих и вспомогательных процессов во времени, высокие мобильность и переналаживаемость. К их недостаткам следует отнести в первую очередь большие капитальные затраты, которые, однако, окупаются в условиях гибкого производства и в случае полной загрузки оборудования.

Структурные компоненты и технические характеристики промышленного робота. Обычно конструкция промышленного робота состоит из трех основных компонентов:

• механической руки (рабочего органа);

• механического привода;

• управляющей части (контроллера).

Механическая рука — это рабочий орган промышленного робота. Рабочие органы могут иметь различное функциональное назначение и разнообразную форму: захватов, инструментов, приспособлений, датчиков и т.д.

Большинство рабочих органов предназначено для захвата предметов. Захваты не только берут, например заготовки, но и центрируют, ориентируют их, осуществляют различные пространственные перемещения и т.д. Конструктивно захваты изготовляют различными в зависимости от вида предметов. Вакуумные захваты используют при перемещении предметов с ровными и чистыми поверхностями. Стальные и чугунные изделия поднимают, применяя электромагниты. Адгезионные захваты основаны на использовании сил сцепления («липкий» захват). При возможности внедрения в поднимаемый предмет без ухудшения его качества или его разрушения используют прокалывающие захваты.

Вторым структурным компонентом промышленного робота является механический привод.


Источником питания любого промышленного робота является в большинстве случаев электрическая анергия, которая в конечном счете преобразуется в механическую энергию движения рабочих органов робота, осуществляющих какие-либо манипуляции в соответствии с целью технологического процесса.

Если сравнить затраты энергии роботом и человеком при выполнении одной и той же работы, то окажется, что робот потребляет энергии в сто раз больше. Это является проявлением технологической неэффективности современных робототехнических приводов по сравнению с человеческой мускульной тканью.

В настоящее время в промышленных роботах наиболее широко используются пневматические и гидравлические приводы, электроприводы. Пневматические приводы сравнительно дешевы, бесшумны и надежны, их легко монтировать и обслуживать. Однако они непригодны для скоростного перемещения механической руки и точного контроля ее положения.

Третьим существенным элементом любого промышленного робота является его управляющая часть (контроллер), или, как иногда говорят, «мозг» робота.

На нижнем уровне своего функционального назначения контроллер выполняет несколько функций: начинает, управляет и заканчивает любые движения руки робота, контролируя ее перемещение к определенным точкам в определенной последовательности. Контроллер должен хранить в памяти все эти точки, ориентации и последовательности, так же, как и взаимодействия с любыми внешними датчиками и устройствами, которые могут быть связаны с роботом. Таким образом, контроллер регулирует потоки энергии в системе, чтобы выполнить заданную операцию.

Использование в современных управляющих системах микрокомпьютеров открывает большие возможности для программирования действий промышленного робота, обеспечивает ббль-шую гибкость при простоте работы. Возросшая вычислительная мощность компьютеров позволяет использовать целые библиотеки часто применяемых программ. Ото в свою очередь облегчает «общение» робота с внешним миром, делает его все более интеллектуальным. Появляется возможность обучения робота новым операциям не только с помощью текстуального программирования, но и путем показа. Использование в РТК быстродействующих микрокомпьютеров нового поколения, способных перерабатывать сенсорную информацию (зрительную и осязательную), получаемую роботами, формировать соответствующие управляющие воздействия, — еще один шаг к созданию искусственного интеллекта и промышленному внедрению интеллектуальных роботов в различных отраслях народного хозяйства.


Основными техническими характеристиками промышленных роботов являются производительность, точность, способность к повторяемости, надежность и качество.

Производительность характеризует количество операций (количество изготовленной продукции) в единицу времени, точность — степень соответствия фактической позиции робота желаемой или заданной.

Способность к повторяемости — способность робота многократно воспроизводить однотипные движения с одной и той же фиксированной точностью.

Надежность робота характеризует степень его устойчивой работы без аварийных установок и поломок в нормальных условиях эксплуатации.

Качество промышленного робота — интегральная характеристика, вытекающая из всех вышеперечисленных и определяющая его технический уровень.

Сферы использования робототехники. Наибольшее применение промышленные роботы и роботизированные технологические комплексы нашли в машиностроении.

В литейном производстве использование роботов связано с обслуживанием литейных машин. Применение роботов во всех операциях технологического процесса литья — от сборки форм и заливки жидкого металла до обрубки литниковых систем и очистки отливок — увеличивает производительность, точность, обеспечивает безопасность работ, повышает коэффициент использования основного оборудования, заменяет труд рабочих, избавляя их от тяжелой работы во вредных условиях.

В процессах обработки металлов давлением промышленные роботы нашли наибольшее применение в операциях ковки, штамповки, прессования. Роботы способны в течение длительного времени переносить раскаленные тяжелые заготовки с высокой скоростью, работая в агрессивной среде. Рука робота способна, например, обеспечить четкое фиксирование заготовки в полости штампа, особенно при многоручьевой штамповке.

Термообработка и химико-термическая обработка являются идеальными технологиями для роботизации, причем достаточно использования сравнительно простых конструкций роботов с позиционным управлением. Кроме того, замена человека роботом в этих процессах, осуществляемых в агрессивных средах и при высоких температурах, несомненно, является прогрессивным мероприятием.

Использование роботов в процессах механической обработки деталей наиболее целесообразно в случае, когда робот обслуживает несколько станков, при этом в программу его действий входят функции установки детали в патрон станка, после обра-


ботки — ее снятие, транспортирование на другой станок и т.д. Если сигнал об установке детали поступает к роботу сразу с двух станков, он обслуживает сначала тот, рабочий цикл которого продолжается дольше. Круг обязанностей робота достаточно широк: он проверяет, в достатке ли запасены заготовки у каждого станка, производит разбор заготовок по размерам, измеряет их длину и диаметр, проверяет степень соответствия полученных размеров требованиям чертежа и т.д. Чтобы робот всюду успевал, у него есть собственная транспортная сеть.

Сварочные работы промышленные роботы освоили одними из первых и до сих пор продолжают совершенствоваться в их выполнении. В 70-х гг. XX в. одной из главных областей применения промышленных роботов стала автоматическая точечная сварка. Выполнение данной операции роботом позволяет освободить человека от тяжелой и монотонной работы, обеспечить высокое качество соединения вне зависимости от его места и профиля соединяемых деталей за счет более точного размещения точек соединения. При помощи роботов выполняется и такой трудоемкий вид неразъемных соединений, как электродуговая сварка. Робот, снабженный устройствами переработки зрительной и осязательной информации, способен образовывать шов сложной конфигурации, обеспечивая высокое качество соединения за счет поддержания устойчивой дуги по мере продвижения вдоль сварного шва. Перспективно использование промышленных роботов при лазерной сварке и резке (раскрое) материалов.

Широкое применение получили промышленные роботы в клеевой технологии. Клеевые работы могут выполняться кистью или краскопультом, а также тепловым пистолетом (для го-рячерасплавленных клеев). Робот выполняет клеевые работы производительнее, качественнее и точнее человека, обеспечивая нанесение равномерного по ширине и толщине слоя клея на поверхности любой конфигурации, точное взаимное расположение склеиваемых поверхностей и равномерную сдавливающую нагрузку с необходимой выдержкой. При этом для робота никакого значения не имеет вредность условий работы.

Все шире применяются промышленные роботы для выполнения таких неотъемлемых составных элементов практически любого производственного процесса в машиностроении, как покрасочные работы и покрытие распылением. В качестве таких покрытий чаще всего используется быстросохнущая краска или эмаль. Равномерное нанесение покрытий тонким слоем, особенно в труднодоступных местах, не только требует высокой квалификации, но и сопровождается выделением токсичных и канцерогенных веществ. Роботы с контурным управлением, обучаемые квалифицированным маляром с использованием


специальных методов — когда руку робота проводят по всему циклу заданной работы или когда для этих целей используют телеоператор, вполне пригодны для этого вида работ.

Самой ответственной стадией машиностроительного производства является сборочный процесс. В настоящее время роботы освоили технологию сборочного производства — например, успешно работают автоматические системы роботов-манипуляторов по сборке трансформаторов, отдельных узлов автомобилей, интегральных микросхем и т.д. Наиболее перспективны так называемые гибкие (программируемые) сборочные системы, обеспечивающие высокие качество процесса сборки и производительность при возможности быстрого изменения технологии сборки с переходом на выпуск новой продукции.

Кроме вышеперечисленных основных областей использования промышленных роботов в машиностроении, они нашли широкое применение и на вспомогательных работах: при упаковке, укладке, загрузке-разгрузке и т.д.

В последнее время роботы начинают применять и в других отраслях: при производстве изделий из пластмасс, в промышленности строительных материалов, в легкой и пищевой промышленности и даже в сельском хозяйстве. Известны, например, конструкции роботов для работы в садах, ягодниках, роботов-животноводов и т.д.

Принципы роботизации современного производства. Правильное понимание сущности автоматизации является необходимой предпосылкой формирования основ технической политики в области роботизации производства. Поэтому в конкретных производственных условиях необходимо руководствоваться определенными принципами, обеспечивающими эффективность роботизации.

Первый принцип — принцип достижения конечных результатов: средства роботизации должны не просто имитировать или замещать действия человека, а выполнять производственные функции быстрее и лучше, лишь тогда они будут по-настоящему эффективными.

Второй принцип — принцип комплексности подхода. К сожалению, довольно часто роботизацию вспомогательных элементов производства совмещают с отсталой технологией основного производства.

Третий принцип — принцип необходимости: средства роботизации должны применяться не там, где их можно приспособить, а там, где без них нельзя обойтись. К сожалению, нередко роботизацию пытаются свести к созданию технических средств, лишь имитирующих действия человека.


Четвертый принцип — принцип своевременности: не нужно создавать конкуренцию человеку там, где он справляется эффективнее, чем робот. Например, при установке деталей на металлорежущем станке замена действий человека на движения робота качество обработки и производительность данного процесса не увеличивает. Более того, на современном уровне развития робототехники ручная установка деталей весом до 4 кг выполняется человеком в несколько раз быстрее. С другой стороны, применение роботов при операциях сварки, окраски, нанесения гальванопокрытий, в литейном производстве позволяет существенно повышать качество продукции, прежде всего, в силу стабилизации технологических процессов. Производительность в этом случае увеличивается за счет быстродействия, увеличения грузоподъемности, точности движений. Человек полностью выводится из рабочей зоны и избавляется от труда в неблагоприятной среде.

Подводя итоги, необходимо подчеркнуть, что значимость промышленных роботов — не в замене человека при обслуживании известных машин. Промышленные роботы являются тем недостающим звеном, которое позволяет объединять разрозненное технологическое оборудование в комплексные гибкие автоматизированные производственные системы машин и аппаратов.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 1941; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.