Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Управление адресами




Учитывая такое разнообразие форматов адресов, возникает закономерный вопрос — какой из них использовать? Некоторые провайдеры услуг ATM осно­вываются исключительно на исходной адресации Е.164. Другие провайдеры ста­раются избегать адресов Е.164 и поддерживают только тот формат, который используется в существующих частных сетях ATM. Большинство частных сетей сейчас использует формат ICD AESA (так как он поддерживается большинст­вом производителей оборудования ATM).

Те провайдеры, которые в дополнение к услугам ATM предоставляют сервис сетей с ретрансляцией кадров, вынуждены использовать адреса Е.164, так как только этот формат одобрен для использования с сервисом коммутируемых вир­туальных соединений. Если сети ATM и сети Frame Relay используют различ­ный формат адресов, то потребуются дорогостоящие шлюзы.

При этом различные конечные системы, принадлежащие к одной сети ATM, могут использовать разные форматы адресов. К тому же любая из таких систем может иметь множество адресов с несколькими форматами одновременно. На­пример, конечная система может использовать формат ICD AESA при взаимо­действии с конечной системой в другой частной сети ATM через сеть общего пользования. Кроме того, конечная система может также использовать исходные адреса Е.164 при установлении коммутируемого виртуального соединения с дру­гой конечной системой в сети ATM общего пользования.

Провайдер может считать свою сеть ATM очень большой частной сетью и на этой основе производить выделение адресов. Хотя такая схема приемлема для закрытых сетей, столь «близорукий» подход может привести к возникновению некоторых проблем в будущем.

В конечном счете, все провайдеры услуг ATM будут объединять свои сети для обеспечения взаимодействия между пользователями. При этом вполне веро­ятно появление копий одного и того же адреса. Если несколько пользователей используют одинаковые адреса, глобальная маршрутизация запросов невыполнима (или, по крайней мере, затруднена). Основываясь на этих рассуждениях, можно сделать вывод, что план нумерации должен предусматривать глобальное исполь­зование адресов. Гарантия глобальной уникальности адресов — это сложная, но вполне выполнимая задача, так как каждый формат адресов стандартизован.

После выбора формата адреса ATM необходимо рассмотреть вопрос конкрет­ного присвоения адресов. Здесь существует две основные возможности: присво­ение адресов (address assignment) и регистрация адресов (address registration).

В первом случае определенный адрес закрепляется за каждым портом устройства, подключенного к сети ATM. Сложность этого метода заключается в том, что, так как сети ATM могут иметь тысячи адресов, довольно сложно за ними уследить. Кроме того, когда конечная станция переключается с одного порта коммутатора ATM на другой, необходимо либо изменять ее адрес, либо менять сетевую конфигурацию. При этом приходится вносить очень много из­менений в сеть, что чрезвычайно сложно в больших сетях ATM.

К счастью, Форум ATM определил в спецификации UNI другой метод выде­ления адресов при помощи интерфейса внутреннего локального управления (Interim Local Management Interface, ILMI). При регистрации адресов сеть ATM опрашивает устройства для выяснения их запросов на получение адресов. Адрес ATM разделяется на две части: префикс и пользовательскую часть. Сеть ATM отвечает за назначение префиксов, относящихся к портам коммутаторов ATM. Подключаемое к ним оборудование получает тот же префикс. Затем формирует­ся полный адрес, который объявляется по сети. На рис. 11.23 показан процесс такой регистрации. Сеть может регистрировать множество префиксов пользова­тельского оборудования ATM, и это оборудование может объявлять множество своих адресов в сети.

 

Регистрация адресов работает со всеми существующими форматами адресов ATM. Для адресов AESA префикс должен иметь длину 13 байт (чтобы соответ­ствовать сегментам IDP и HO-DSP адреса), а пользовательская часть адреса соответствует 6-байтовому идентификатору конечной системы и однобайтовому полю SEL. Для адресации Е.164 адресный префикс может быть переменной длины, а пользовательская часть обязана быть нулевой, то есть полный адрес всегда равен префиксу.

Процедура регистрации адресов доставляет ряд преимуществ. Провайдеру услуг необходимо настроить только один префикс на каждый порт ATM. Для подключаемого оборудования можно указывать произвольную пользователь­скую часть. Кроме того, если оборудование будет перенесено с одного места на другое, то не потребуется изменения конфигурации сети. Такое оборудование просто перерегистрируется при новом подключении, получит новый префикс от сети, а затем разошлет свой новый адрес по сети.

Можно присвоить один и тот же префикс нескольким портам коммутатора или назначить уникальный префикс каждому порту.

С практической точки зрения при регистрации адресов следует учитывать три обстоятельства. Первое заключается в том, что подключаемое к сети ATM оборудование должно поддерживать интерфейс ILMI для регистрации адресов. Если этот интерфейс не поддерживается, то такая схема работать не будет. Однако большая часть производимого в настоящее время оборудования имеет встроенную поддержку регистрации адресов. Второе — такая схема работает оп­тимально только в том случае, если все подключаемое оборудование имеет уни­кальные пользовательские части адреса. Если несколько устройств имеют одинаковую пользовательскую часть адреса, потребуются некоторые усилия, чтобы гарантировать, что эти устройства получат разные префиксы. Для избежа­ния таких проблем важно убедиться в уникальности пользовательских частей адресов, например, использовать МАС-адреса. И, наконец, третье — такой метод адресации работает очень хорошо при присвоении адресов оборудованию, на котором работают индивидуальные пользователи сети ATM.

Как уже было отмечено, адреса формата ICD и DCC AESA разделяются на несколько полей. Спецификация UNI 3.1 также рекомендует разделить сегмент HO-DSP на несколько полей. Это необходимо для упрощения маршрутизации запросов и, следовательно, повышения масштабируемости сети.

Рассмотрим для примера гипотетическую сеть ATM, состоящую из 200 комму­таторов, на каждом из которых настраиваются 100 адресов (с учетом приведен­ных выше рекомендаций, эти адреса будут на самом деле префиксами портов, а не полными адресами). Способ назначения адресов будет иметь значительное влияние на эффективность маршрутизации в рассматриваемой сети. Можно оценить ее, проверив таблицу маршрутизации на каждом коммутаторе ATM.

Предположим, что не существует иерархического плана нумерации для сети и адреса последовательно присваиваются при включении нового порта. При таком сценарии адреса просто «разбрасываются» по сети. В результате каждый коммутатор должен знать, кому был присвоен тот или иной индивидуальный адрес. Так как существуют 20 000 адресов в сети, то таблица маршрутизации будет иметь такое же количество записей.

Можно рассмотреть альтернативный план нумерации, в котором адреса при­сваиваются иерархически. Каждому коммутатору в сети присваивается иденти­фикационный номер, и все индивидуальные адреса портов на этом коммутаторе начинаются с указанного идентификатора. Как следствие, маршрутизация стано­вится гораздо проще. Каждому коммутатору требуется знать только то, как свя­заться с другим коммутатором по его идентификатору. Для этого в таблицу маршрутизации коммутатора необходимо занести только 199 записей и она уже позволит сети маршрутизировать запросы на установление коммутируемых вир­туальных соединений к удаленному коммутатору.

Этот коммутатор должен знать, как маршрутизировать запрос до сотни устройств со своими адресами, к которым он может отправить данные. Это еще 100 записей в таблицу маршрутизации. Во втором случае полная таблица марш­рутизации будет иметь 299 записей, в отличие от 20 000 записей в первой схеме назначения адресов. Небольшая таблица маршрутизации приводит к более эффективному поиску в ней необходимых записей, снижению времени установ­ления коммутируемых виртуальных соединений и требований к памяти комму­таторов.

Рассмотренный гипотетический сценарий демонстрирует всю выгоду от ис­пользования иерархического плана нумерации в сети ATM. Для его практиче­ской реализации при формате адресов AESA потребуется разделить сегмент HO-DSP на несколько полей. Прежде чем приводить рекомендации по кон­фигурации префиксов, важно рассмотреть общие требования к плану нумерации ATM:

q План нумерации должен упрощать обмен маршрутной информацией и уменьшать размер таблиц маршрутизации;

q План нумерации должен быть масштабируемым, так чтобы расширение сети не приводило к проблемам с адресацией;

q План нумерации должен обеспечить глобальную уникальность адреса, по крайней мере, в рамках данной сети.

На рис. 11.24 показан план нумерации, который удовлетворяет всем перечис­ленным требованиям.

 

План рассчитан на использование 11-байтового префикса порта коммутатора. Префикс порта состоит из сегмента IDP и 8 байт сегмента HO-DSP, которые разделяются на следующие поля:

q Идентификатор провайдера услуг. Это поле первого уровня определяет уникальный набор адресов внутри адресного пространства ICD/DCC AESA, которое зарезервировано для определенного провайдера. Для по­лучения такого адресного пространства провайдеру услуг потребуется за­регистрировать его в управляющей организации. Следует отметить, что в рассматриваемом плане нумерации под это поле выделяется четыре байта в соответствии со спецификацией UNI 3.1. Фактический размер этого поля будет определяться при содействии организации, отвечающей за ре­гистрацию адресов;

q Индикатор домена маршрутизации. Данное поле второго уровня иерар­хии определяет домен маршрутизации, к которому принадлежит префикс. Протокол маршрутизации запросов на установление виртуальных соеди­нений PNNI поддерживает до 128 уровней иерархии доменов маршрути­зации, что обеспечивает достаточные возможности роста сетей ATM;

q Индикатор адреса узла. Данное поле используется для указания узла, которому принадлежит этот префикс. Выделенные под эти цели 12 бит позволяют поддерживать в одном домене маршрутизации до 4096 узлов;

q Индикатор адреса порта. Это поле используется для указания порта на коммутаторе ATM, владеющего данным префиксом. Выделенные под эти цели 12 бит позволяют поддерживать 4096 портов на одном коммутаторе.

Для портов, к которым подключается конечное оборудование, префиксы мо­гут выравниваться до 13 байт для поддержки регистрации адресов с помощью ILMI.

Рассматриваемый план нумерации будет работать одинаково хорошо как для формата адресов ICD AESA, так и для DCC AESA. Для подключения к частным сетям ATM этот план предусматривает два байта адресного пространства, кото­рые пользователь может присвоить локальным коммутаторам. Этого адресного пространства достаточно для частных сетей ATM с количеством узлов до 64 000.

Поле идентификатора конечной системы не разделяется и используется для уникальной идентификации конечных систем. Как уже было отмечено, рекомен­дуется, чтобы пользователи указывали МАС-адреса в этом поле, что обеспечит универсальность адресной схемы.

Предложенный план нумерации решает все поставленные задачи. Адреса присваиваются иерархически, основываясь сначала на домене маршрутизации, а затем — на идентификаторе узла. Это означает, что запросы на установление коммутируемых виртуальных соединений маршрутизируются на основе домена маршрутизации (последний не следует путать с доменом маршрутизации в ло­кальных сетях). Если получатель находится в одном домене с коммутатором, принявшим запрос, он будет обрабатываться с учетом поля идентификатора узла. Поэтому начальному коммутатору не нужно обладать информацией о каж­дой точке в домене маршрутизации; ему необходимо знать только расположение каждого коммутатора.

 

 




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 508; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.