Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пентозофосфатный путь в метаболизме глюкозы




Это путь превращения глюкозы в пентозы. В пентозофосфатном пути превращения глюкозы можно выделить две части: А - окислительный путь и Б - неокислительный путь синтеза пентоз. Коферментом дегидрогеназ является NADP+, который восстанавливается в NADPH и используется клетками в реакции восстановления и гидроксилирования. Кроме того, пентозофосфатный путь (окислительный и неокислительный) поставляет клетке пентозофосфаты, необходимые для синтеза нуклеиновых кислот и коферментов (NAD, FAD, СоА).

Пентозофосфатный путь превращения глюкозы

Все реакции пентозофосфатного пути проходят в цитозоле клетки. Реакции неокислительного этапа пентозофосфатного пути являются обратимыми, поэтому становится возможным синтез гексоз из пентоз. Некоторые метаболиты неокислительного пути являются также и метаболитами гликолиза. Из этого следует, что оба процесса тесно связаны и в зависимости от потребностей клетки возможны переключения с одного пути на другой. При сбалансированной потребности в NADPH и пентозах в клетке происходит окислительный путь синтеза пентоз. Если потребности в пентозах превышают потребности в NADPH, то окислительный путь шунтируется за счет использования метаболитов гликолиза: фруктозо-6-фосфат и глицероальдегидфосфат в реакциях неокислительного пути превращаются в пентозы. Если же NADPH необходим в большей степени, чем пентозы, то возможны два варианта:

  1. при высоком энергетическом статусе клетки излишки пентоз путем обратных реакций неокислительного пути превращаются в фруктозо-6-фосфат и глицероальдегидфосфат, из которых в процессе глюконеогенеза образуется глюкоза;
  2. при низком энергетическом статусе клетки из пентоз также образуются глицероальдегидфосфат и фруктозо-6-фосфат, которые затем включаются в гликолиз
Связь пентозофосфатного пути превращения глюкозы с гликолизом и глюконеогенезом

Регуляция метаболизма углеводов (некоторые аспекты)

Регуляция метаболизма глюкозы в печени, связанная с ритмом питания. Направление метаболизма глюкозы меняется при смене периода пищеварения на постабсорбтивное состояние. При пищеварении глюкоза задерживается в печени и депонируется в виде гликогена. Кроме того, глюкоза используется для синтеза жиров. Причем, исходные субстраты для синтеза жира - a -глицерофосфат и ацетил-СоА образуются из глюкозы в процессе гликолиза. Следовательно, гликолиз в печени имеет особое значение. В постабсорбтивном периоде направление процессов меняется на распад гликогена и глюконеогенез. Координация процессов осуществляется путем аллостерической регуляции и ковалентной модификацией ферментов (фосфорилирование и дефосфорилирование). Регуляторные влияния направлены на реакции субстратных циклов:

Регуляция обмена глюкозы в печени. I, II, III – субстратные циклы

Активность ферментов субстратного цикла фруктозо-6-фосфат «фруктозо-1,6-бисфосфат (цикл II) зависит от концентрации фруктозо-2,6-бисфосфата, образующегося из фруктозо-6-фосфата в дополнительной реакции. Синтез и распад этого регуляторного метаболита происходят в реакциях, составляющих еще один субстратный цикл, оба направления которого катализируются одним - бифункциональным ферментом (БИФ). Киназная или фосфатазная активность бифункционального фермента зависит от фосфорилированного или дефосфорилированного состояния этого фермента. Концентрация фруктозо-2,6-бисфосфата при пищеварении повышается, так как БИФ в этом случае дефосфорилирован и проявляет киназную активность. Фруктозо-2,6-бисфосфат является аллостерическим активатором гликолитического фермента и ингибитором фермента глюконеогенеза. Следовательно, при пищеварении ускоряется гликолитическое направление цикла и тормозится направление глюконеогенеза. Фруктозо-1,6-дифосфат служит аллостерическим активатором пируваткиназы (гликолитический фермент III цикла). В период пищеварения фруктозо-2,6-дифосфат активирует фосфофруктокиназу и концентрация фруктозо-1,6-дифосфата увеличивается, что приводит к активации пируваткиназы. Так достигается согласованность в регуляции двух субстратных циклов. Регуляция I субстратного цикла достигается следующим образом: при пищеварении концентрация глюкозы повышается до 10-20 мкмоль/л. Активность глюкокиназы в этих условиях максимальна, и глюкозо-6-фосфат направляется на синтез гликогена и жиров. Кроме того, глюкоза при такой концентрации участвует в активации гликогенсинтазы. Активность пируватдегидрогеназного комплекса в период пищеварения также повышается, потому что он в этих условиях дефосфорилирован. В результате ускоряется образование Ацетил-СоА и использование его для синтеза жирных кислот:

Регуляция пируватдегидрогеназного комплекса

Переход ферментов из дефосфорилированного состояния в фосфорилированное находится под контролем гормонов, в случае регуляции метаболизма глюкозы в печени основными являются глюкагон и инсулин. Регуляция метаболизма глюкозы в мышцах, связанная с режимом мышечной работы При переходе от состояния покоя к мышечной работе возрастает потребность клеток в энергии, которая восполняется за счет ускорения процессов распада гликогена и гликолиза. Координация интенсивности гликолиза обеспечивается аллостерической регуляцией ферментов необратимых стадий энергетическим статусом клетки. Так, ингибитором фосфофруктокиназы служит ATP, если в ходе гликолиза синтез ATP превышает потребности клетки. В основе регуляции обмена гликогена лежит изменение активности ключевых ферментов: гликогенсинтазы и гликогенфосфорилазы. Регуляция активности этих ферментов осуществляется путем фосфорилирования - дефосфорилирования:

Регуляция синтеза и распада гликогена

Соотношение процессов синтеза гликогена, распада гликогена и гликолиза в мышцах контролируют инсулин и адреналин.

 




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 437; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.