Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расчет влажностного режима ограждающей конструкции




(графоаналитический метод Фокина-Власова)

 

Цель последующих вычислений - оценка влажностного состояния ограждающих конструкций зданий, которое оказывает большое влияние на теплозащитные свойства и долговечность конструкций.

 

3.1. Выбор расчетных параметров наружного воздуха

Влажностный режим рассматривается дифференцированно по периодам года. При этом к зимнему периоду относятся месяцы со средней температурой наружного воздуха ниже минус 5ºС, к весенне-осеннему (переходному) периоду относятся месяцы со среднемесячными температурами наружного воздуха в пределах от минус 5ºС до плюс 5ºС, к летнему периоду - со среднемесячными температурами выше плюс 5ºС.

 

Определение расчетных параметров наружного воздуха

Таблица 3.1

№ п/п Период года Месяцы t ext , ºС eext , Па Кол-во месяцев zi Средние за период
t ext i,, ºС eext i ,, Па
  Зимний t <- 5 ºС            
  Летний t >+5 ºС            
  Весенне-осенний - 5 ºС ≤ t ≤ +5 ºС            

Среднемесячные значения температур t ext и парциальных давлений водяного пара eext наружного воздуха для заданного района строительства берутся из таблицы А.2 Приложения А.

Обработка климатических параметров ведется в форме табл. 3.1.

Устанавливаются средние за период значения температуры t ext i и парциального давления водяного пара наружного воздуха eexti для всех периодов года (i – номер периода).

3.2. Определение расчетных параметров внутреннего воздуха

Температура внутреннего воздуха tint, °C, и относительная влажность внутреннего воздуха jint, %, принимаются по табл.1.2 в соответствии с заданием.

Парциальное давление насыщенного водяного пара Eint принимается при данной температуре внутреннего воздуха tint по таблице В.1 Приложения В.

Парциальное давление водяного пара, содержащегося в воздухе помещения, e int, рассчитывается по формуле:

eint = (j int / 100) Eint (3.1)

 

3.3. Определение значений температур по толщине ограждающей конструкции в зимний, летний и весенне-осенний периоды года

Задача решается графическим методом, как показано на рис. 1.

Для этого:

а) по оси абсцисс в выбранном масштабе следует отложить последовательно термические сопротивления всех слоев конструкции, а также внутреннего и наружного пограничных слоев воздуха (табл.1.3). На рис. 1 приведен пример с трехслойной стеной. Слой утеплителя дополнительно разбивается на несколько частей (в данном случае на 4 части). В результате по толщине стены отмечено 7 сечений;

б) по вертикали на внешних границах воздушных слоев в принятом масштабе откладываются значения температур внутреннего tint и наружного воздуха: для зимнего (t ext1), летнего (t ext2)и весенне-осеннего ( t ext3)периодов года. Значения берутся из табл. 3.1.

Строятся температурные графики для трех периодов года (в условиях стационарной теплопередачи графики - прямые линии);

в) определяются значения температур в каждом сечении, полученные данные сводятся в табл. 3.2. Принимая эти температуры за точку росы и используя таблицы В.1 и В.2 Приложения В, находят соответствующие давления насыщенного водяного пара Е и заносят их в табл. 3.2.

 

Таблица 3.2

№ сечения Периоды года
Зима Лето Весна-Осень
t , ºС Е, Па t , ºС Е, Па t , ºС Е, Па
             
             
             
             
             
             
             

3.4. Определение сопротивлений паропроницанию слоев ограждающей конструкции.

 

Значение сопротивления паропроницанию одного конструктивного слоя Rvp определяется по формуле:

Rvp = d / m, (3.2)

где d - толщина слоя ограждающей конструкции, м;

m - расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции, мг/(м·ч·Па), принимаемый по приложению Б.

Сопротивление паропроницанию измеряется в м2 · ч · Па/мг.

Сопротивление паропроницанию многослойного ограждения равно сумме сопротивлений паропроницанию отдельных слоев:

Rvp = Rvp1 + Rvp2 + … + Rvpn, (3.3)

где Rvp1, Rvp2, Rvpn - сопротивления паропроницанию отдельных слоев.

 

3.5. Проверка возможности конденсации влаги внутри ограждающей конструкции

Проверка проводится графическим способом. Для этого:

а) по оси абсцисс в выбранном масштабе откладываются последовательно сопротивления паропроницанию всех слоев конструкции Rvp (пример с трехслойной стеной показан на рис.2а, б).

С рисунка 1 переносятся отмеченные ранее сечения с сохранением их нумерации;

б) по оси ординат (внутренняя поверхность ограждения) в выбранном масштабе откладывается значение eint, а на наружной поверхности откладывается среднее значение парциального давления водяного пара за зимний период eext1 (рис.2а) (При отсутствии «зимнего» периода строится график для переходного периода, т.е. наиболее холодного). Прямая линия, соединяющая eint и eext1,- график изменения парциального давления водяного пара в ограждающей конструкции без учета возможной конденсации при установившемся процессе паропроницания;

в) по данным табл.3.2 для зимнего периода строится график изменения давления насыщенного водяного пара Е (на рис.2а – пунктирная линия);

г) проводится анализ взаимного расположения графиков Е и eint - eext (тонкая сплошная линия). Если графики не пересекаются, то конденсация водяного пара в ограждении отсутствует; в случае пересечения или касания графиков в конструкции возможна конденсация влаги;

д) аналогичные построения выполняются отдельно для летнего (рис.2б) и весенне-осеннего периодов года. Для построения графика изменения парциального давления водяного пара в конструкции используются средние значения за летний период eext2 и весенне-осенний период eext3, взятые из табл.3.1;

е) в случае конденсации влаги (например, зимой) определяется плоскость или зона конденсации (заштрихована на рисунке 2а).

Для этого из концов прямой eint - eext1 проводятся касательные к графику Е. Область между точками касания Ек' и Ек" - зона конденсации. При совпадении точек касания получается плоскость конденсации.

Затем проводится итоговый график изменения парциального давления с учетом конденсации водяного пара (интенсивная линия, рис. 2а);

ж) зона (плоскость) конденсации влаги, образовавшаяся в период влагонакопления,переносится на график, соответствующий периоду без конденсации влаги в ограждении. В этот период происходит испарение накопившейся влаги. Проводится итоговый график изменения парциального давления, как это показано на рис. 2б (интенсивная линия);

з) на рисунках стрелками указывают направление движения влаги Р' и Р '' (к зоне или от зоны конденсации - в сторону уменьшения парциального давления водяного пара).

Если конденсация влаги отсутствует в течение года, влажностный режим ограждающей конструкции считается удовлетворительным, и далее расчет не проводится.

 

3.6. Расчет количества влаги, подходящей к зоне конденсации или отходящей от нее за зимний, летний и весенне-осенний периоды года.

 

Для каждого периода года определяется количество влаги, подходящей (уходящей) на участке, предшествующем зоне конденсации, Р', а также – уходящей из зоны конденсации, Р", по формулам:

(3.4)

(3.5)

где R ivp - сопротивление паропроницанию от внутренней поверхности до начала зоны конденсации (рис.2);

Rеvp - сопротивление паропроницанию от конца зоны конденсации до наружной поверхности (рис. 2);

z – продолжительность периода в месяцах (табл.3.1);

множитель 722 среднее количество часов в месяце;

значения Ек' и Ек'' определяются по графикам (см. рис. 2). В случае плоскости конденсации Ек' = Ек'' = Ек.

Количество влаги Р' и Р" определяется для каждого периода года.

Примечание

1. Р' и Р" рассчитываются по абсолютной величине.

2. Единицы измерения Р' и Р" – мг/м2; значения будут получаться достаточно большие. Поэтому целесообразно привести их к виду: х,хх ∙ 106 (например: 2,17 ∙ 106 или 0,74 ∙ 106).

 

Результаты расчетов сводятся в табл. 3.3. При этом Р' и Р" принимаются со знаком «плюс», если соответствующее количество влаги перемещается к зоне (плоскости) конденсации, и со знаком «минус», если количество влаги перемещается от зоны (плоскости) конденсации.

Таблица 3.3

Период года Рi ' Рi "
Зима    
Лето    
Весна-Осень    

 

 

3.7. Проверка влажностного режима ограждающей конструкции из условия недопустимости накопления влаги в ней за годовой период эксплуатации

 

Определяется годовой баланс влаги:

Рi ' + Рi" = Р (3.6)

Получение результата Р ≤ 0 свидетельствует о том, что в течение года влаги может испариться больше, чем накопилось. Следовательно, конструкция удовлетворяет строительным нормам.

При Р > 0 количество накопившейся влаги превышает количество испарившейся, что недопустимо.

 

3.8. Проверка влажностного режима ограждающей конструкции из условия непревышения допустимой массовой влажности материала

Для того, чтобы относительная массовая влажность увлажняемого материала к концу периода влагонакопления не превышала допустимое значение (соответствующее полному сорбционному увлажнению материала), должно выполняться условие:

∆ Р ≥ Рк (3.7)

Здесь Рк – количество конденсата, накопившегося в конструкции к концу периода влагонакопления:

Рк = ∑ Рi '+Рi", (3.8)

где значения Рi ' и Рi" берутся только для тех периодов года, когда происходит конденсация влаги (из табл.3.3);

Р – допустимое количество влаги, которое может поглотить 1м² теплоизоляционного слоя:

∆Р = 104 · ∆wav · r · d, (3.9)

где Dwav - предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления, принимаемое по таблице 3.4;

r - плотность теплоизоляционного слоя, кг/м³;

d - толщина теплоизоляционного слоя, м.

 

3.9. Определение сопротивления паропроницанию дополнительного слоя пароизоляции

 

При получении в п. 3.7 результата Р > 0 или в п. 3.8 результата Рк > ΔР в конструкции требуется устройство пароизоляции.

Сопротивление паропроницанию слоя пароизоляции определяется по формуле:

Δ Rvp = R ivp (m - 1), (3.10)

где m – коэффициент, показывающий во сколько раз надо увеличить сопротивление на пути движения влаги к зоне конденсации R ivp.

Коэффициент m рассчитывается следующим образом:

а) при получении в п. 3.7 результата Р > 0 коэффициент m выбирают таким образом, чтобы выполнилось условие Р = 0.

С учетом этого формула (3.6) примет вид:

1/ mРi '+Рi"= 0

Следовательно,

m = - ∑ Рi ' /Рi" (3.11)

Здесь суммирование проводится по всем периодам года.

б) при получении в п. 3.8 результата Рк > ΔР коэффициент m должен быть таким, чтобы выполнялось условие Рк =Δ Р. Тогда выражение (3.8) примет вид:

1/ mРi '+Рi"= Δ Р

Следовательно,

m = ∑ Рi ' / (Δ Р - ∑ Рi") (3.12)

В данном случае суммирование проводится по тем периодам, когда происходит конденсация влаги в конструкции.

 

При нарушении обоих условий, проверяемых в п.3.7 и п.3.8, сопротивление пароизоляции Δ Rvp определяется дважды. Из двух величин Δ R vp принимается большая.

В качестве пароизоляции употребляются тонкие листовые и рулонные материалы, обладающие малой паропроницаемостью. Дополнительная пароизоляция выбирается по таблице приложения Г.

Следует изобразить эскиз запроектированной ограждающей конструкции с устройством слоя пароизоляции.

 

Предельно допустимые значения коэффициента Dwav

Таблица 3.4

Материал ограждающей конструкции Предельно допустимое приращение расчетного массового отношения влаги в материале Dwav, %
1. Кладка из глиняного кирпича и керамических блоков 1,5
2. Кладка из силикатного кирпича 2,0
3. Легкие бетоны на пористых заполнителях (керамзитобетон, шугизитобетон, перлитобетон, шлакопемзобетон)  
4. Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.)  
5. Пеногазостекло 1,5
6. Фибролит и арболит цементные 7,5
7. Минераловатные плиты и маты  
8. Пенополистирол и пенополиуретан  
9. Фенольно-резольный пенопласт  
10. Теплоизоляционные засыпки из керамзита, шунгизита, шлака  
11. Тяжелый бетон, цементно-песчаный раствор  

 




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 458; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.067 сек.