Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение систем линейных уравнений с помощью определителей. Формулы Крамера




Задачи для самостоятельного решения

Задача 1. Вычислить определители:

1) 2) 3) 4) .

Задача 2. Вычислить определители, разложив их по элементам первого столбца:

1) 2)

Задача 3. Найти из уравнений:

1) 2)

I) Система двух линейных неоднородных уравнений с двумя неизвестными

Обозначим

основной определитель системы;

, вспомогательные определители.

а) Если определитель системы , то система имеет единственное решение, которое находится по формулам Крамера:

, . (1)


б) Если определитель системы , то возможны случаи:

1) (уравнения пропорциональны), тогда система содержит только одно уравнение, например, и имеет бесконечно много решений (неопределённая система). Для её решения необходимо выразить одну переменную через другую, значение которой выбирается произвольно;

2) если хотя бы один из определителей отличен от нуля, то система не имеет решений (несовместная система).

II) Система двух линейных однородных уравнений с тремя переменными

(2)

Линейное уравнение называется однородным, если свободный член этого уравнения равен нулю.

а) Если , то система (2) сводится к одному уравнению (например, первому), из которого одно неизвестное выражается через два других, значения которых выбираются произвольно.

б) Если условие не выполнено, то для решения системы (2) перенесем одну переменную вправо и решим систему двух линейных неоднородных уравнений с использованием формул Крамера (1).

III) Система трёх линейных неоднородных уравнений с тремя неизвестными:

Составим и вычислим основной определитель и вспомогательные определители , .

а) Если , то система имеет единственное решение, которое находится по формулам Крамера:

, , (3)

б) Если , то возможны случаи:

1) , тогда система будет иметь бесконечно много решений, она будет сводиться либо к системе состоящей из одного, либо из двух уравнений (одну неизвестную перенесём направо и решим систему двух уравнений с двумя неизвестными);

2) хотя бы один из определителей отличен от нуля, система не имеет решения.

IV) Система трёх линейных однородных уравнений с тремя неизвестными:

Эта система всегда совместна, так как имеет нулевое решение.

а) Если определитель системы , то она имеет единственное нулевое решение.

б) Если же , то система сводится либо к двум уравнениям (третье является их следствием), либо к одному уравнению (остальные два являются его следствием) и имеет бесконечно много решений (см. п. II).

Задача 4. Решить систему уравнений

Решение. Вычислим определитель системы

Так как , то система имеет единственное решение. Воспользуемся формулами Крамера (3). Для этого вычислим вспомогательные определители:

, ,

Тогда

, ,

Задача 5. Решить систему уравнений

Решение. Вычислим определитель системы:

Следовательно, система однородных уравнений имеет бесконечно много решение, отличных от нулевого. Решаем систему первых двух уравнений (третье уравнение является их следствием):

Перенесём переменную в правую часть равенства:

Отсюда по формулам (1) получаем

, .




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 388; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.