Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Круговорот азота. Азот является элементом, необходимым для существования животных и растений, он входит в состав белков




Азот является элементом, необходимым для существования животных и растений, он входит в состав белков, аминокислот, нуклеиновых кислот, хлорофилла, гемов и др. В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов.

Несмотря на величайшую сложность, круговорот азота осуществляется быстро и беспрепятственно. Воздух, содержащий 78% азота, одновременно служит и огромным вместилищем и предохранительным клапаном системы. Он беспрерывно и в разных формах питает круговорот азота.

Цикл азота состоит в следующем. Его главная роль заключается в том, что он входит в состав жизненно важных структур организма - аминокислот белка, а также нуклеиновых кислот. В живых организмах содержится примерно 3% всего активного фонда азота. Растения потребляют примерно 1% азота; время его круговорота составляет 100 лет.

От растений-продуцентов азотосодержащие соединения переходят к консументам, от которых после отщепления аминов от органических соединений азот выделяется в виде аммиака или мочевины, а мочевина затем также превращается в аммиак (вследствие гидролиза).

В дальнейшем в процессах окисления азота аммиака (нитрификации) образуются нитраты, способные ассимилироваться корнями растений. Часть нитритов и нитратов в процессе денитрификации восстанавливается до молекулярного азота, поступающего в атмосферу. Все эти химические превращения возможны в результате жизнедеятельности почвенных микроорганизмов. Эти удивительные бактерии - фиксаторы азота - способны использовать энергию своего дыхания для прямого усвоения атмосферного азота и синтезирования протеинов. Таким путем в почву ежегодно вносится около 25 кг азота на 1 га.

Но самые эффективные бактерии живут в симбиозе с бобовыми растениями в клубеньках, развивающихся на корнях растений. В присутствии молибдена, который служит катализатором, и особой формы гемоглобина (уникальный случай у растений) эти бактерии (Rhizobium) ассимилируют громадные количества азота. Образующийся (связанный) азот постоянно диффундирует в ризосфере (часть почвы), когда клубеньки распадаются. Но еще азот поступает в наземную часть растений. Благодаря этому бобовые исключительно богаты протеинами и очень питательны для травоядных. Годовой запас, таким образом накапливаемый в культурах клевера и люцерны, составляет 150-140 кг/га.

Помимо бобовых такие бактерии живут на листьях растений (в тропиках) из семейства Rublaceae, а также актиномицеты - на корнях ольхи, фиксирующие азот. В водной среде - это синие водоросли.

Итак, азот из разнообразных источников поступает к корням в виде нитратов, абсорбируется корнями и трансформируется в листья для синтеза протеинов. Протеины служат основой азотного питания животных, а также пищей некоторых бактерий (паразитов). Организмы, разлагающие органическое вещество после смерти, переводят азот из органических соединений в минеральные. Каждая группа биоредуцентов специализируется на каком-либо одном звене этого процесса. Цепь заканчивается деятельностью аминообразующих организмов, образующих аммиак (NН3), который далее входит в цикл нитрификации: Nitrosomonas окисляет его до нитритов, а Nitrobarter окисляет нитриты в нитраты.

С другой стороны, бактерии-денитрификаторы разлагают нитраты, освобождают N2, который улетучивается в атмосферу. Но этот процесс не очень опасен, так как разлагает примерно 20% общего азота, и то лишь в почвах, очень удобренных навозом (примерно 50-60 кг азота 1 га). Общая схема круговорота азота представлена на рисунке4.

 

Рис.4. Схема круговорота азота.

 

Очень важно изучать и контролировать круговорот азота, особенно в антропогенных биоценозах, потому что небольшой сбой в какой-либо части цикла может привести к серьёзным последствиям: сильным химическим загрязнениям почв, зарастанию водоемов и загрязнению их продуктами разложения отмершей органики (аммиак, амины и др.), высокому содержанию растворимых соединений азота в питьевой воде.

Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека.

Во-первых, поступление оксидов азота в атмосферу при сжигании топлива на ТЭЦ, транспорте, заводах («лисий хвост»). В промышленных районах их концентрация в воздухе становится очень опасной. Под воздействием излучения происходят реакции органики (углеводородов) с оксидами азота с образованием высокотоксичных и канцерогенных соединений. А также возникают кислотные дожди — явление, при котором наблюдается понижение pH дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 — из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:

N2+ O2 = 2NO — Q

Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:

2NO + O2 = 2NO2

Далее оксид азота реагирует с атмосферной водой с образованием кислот:

2NO2 + H2O = HNO3 + HNO2

образуются азотная и азотистая кислоты. В капельках атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву.

Во-вторых, массовое производство азотных удобрений (селитра) и их использование приводит к избыточному накоплению нитратов. Азот, поступающий на поля в виде удобрений, теряется из-за выщелачивания и денитрификации.

И наконец, сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.) приводят к повышению уровня биологического загрязнения. Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактериями в нитраты.




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 843; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.