Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Масштабный фактор




Влияние температуры и среды испытания

При повышенных температурах испытания на усталость обычно снижаются пределы выносливости в связи с влиянием процессов ползучести, особенно в случае, если среднее напряжение цикла не равно нулю. Снижение температуры испытания ниже комнатной у гладких образцов приводит к повышению прочностных характеристик механических свойств (но к снижению характеристик пластичности) и пределов выносливости.

В углеродистых сталях в интервале температур испытаний 150...300 °С наблюдается аномальное повышение пределов выносливости по сравнению с испытаниями при комнатной температуре, связанное с протеканием процессов динамического деформационного старения. Отмечают пять основных механизмов, способствующих повышению статической и циклической прочности низкоуглеродистой стали при протекании динамического деформационного старения:

– блокирование дислокаций атмосферами Коттрелла (образование дальнего порядка атомов внедрения у дислокаций);

– блокирование дислокаций у препятствий за счет упорядочения атомов внедрения вокруг дислокаций (атмосферы Сноека);

– увеличение сопротивления трения движению дислокаций вследствие упорядочения атомов внедрения вокруг дислокаций;

– ″вязкое″ сопротивление, испытываемое движущимися дислокациями благодаря образованию вокруг дислокаций атмосфер из атомов внедрения;

– блокирование дислокаций, обусловленное выделением мелкодисперсных частиц примесей в процессе деформирования.

Снижение температуры испытания ниже комнатной у гладких образцов приводит к повышению прочностных характеристик механических свойств и пределов выносливости гладких образцов [2].

 

Под масштабным фактором понимают снижение пределов выносливости образцов или деталей с ростом их абсолютных размеров. Для оценки влияния масштабного фактора вводят коэффициент влияния абсолютных размеров поперечного сечения

εσ = σ RdR,(2)

где σ Rd предел выносливости образцов с диаметром большим 7,5 мм; σ R – предел выносливости образцов с диаметром меньше d = 7,5 мм.

Было показано, что при циклическом изгибе и кручении пределы выносливости снижаются на 30...50 % с увеличением диаметра до 200 мм. Основные причины, вызывающие снижение пределов выносливости с увеличением размеров детали, следующие:

• металлургический фактор – ухудшение качества металла отливки или поковки;

• технологический фактор – влияние термической и механической обработки при изготовлении деталей различных размеров;

• статистический фактор – увеличение вероятности появления опасных дефектов и перенапряженных зерен, что в связи со статистической природой процесса усталостного разрушения приводит к увеличению вероятности разрушения.

Масштабный фактор не только влияет на предел выносливости гладких образцов, но также изменяет характеристики циклической трещиностойкости, которые оцениваются при построении кинетических диаграмм усталостного разрушения (КДУР). На рис. 2 приведены сравнительные данные по исследованию скорости распространения усталостных трещин (РУТ) в сталях 15Х2МФА и 15х2НМФА, полученные при испытании образцов на внецентренное растяжение толщиной 0,025 и 0,15 м в диапазоне изменения К max от Кth до Кfc.

Видно, что увеличение толщины образца существенно влияет на закономерности РУТ во всем указанном диапазоне изменения К max. С увеличением толщины образцов Кth для стали 15Х2МФА возрастает с 7,7 до 18 МПа , а для стали 15Х2НМФА – от 8,7 до 14,6 МПа . При этом происходит уменьшение скорости РУТ при значениях Кmax< 28 МПа для стали 15Х2МФА и при К max< 20 МПа для стали 15Х2НМФА. Такое поведение материалов с изменением толщины образцов объясняют повышением остаточных напряжений сжатия в устье трещины и увеличением времени, необходимого для выхода трещины, возникшей в центральных областях образца, на его боковые поверхности. При увеличении размеров образца на стадии стабильного роста усталостной трещины, где соблюдается закон Париса, скорости РУТ примерно одинаковы для образцов разной толщины [2].

Рисунок 2 – Влияние толщины образца на закономерности РУТ в сталях 15ХНМФА – 1,2 и 15Х2ММФА – 3,4 при 293 К; 1,3 – толщина образца 0,025 м; 2,4 – толщина 0,15 м




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 436; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.