КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Потенциал
Теорема о циркуляции для электростатического поля. Поскольку электростатическое поле является центральным, то силы, действующие на заряд в таком поле, являются консервативными. Так как
Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система "заряд — электростатическое поле" обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:
Если Wp2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q0 равна работе, которая была бы совершена при перемещении заряда q0 из данной точки в точку с нулевой энергией. Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q (рис. 1).
Рис. 1 Будем помещать в точку М этого поля различные пробные положительные заряды q0. Потенциальная энергия их различна, но отношение
Единицей потенциала в СИ является вольт (В) или джоуль на кулон (Дж/Кл). Потенциалом электростатического поля в данной точке называют скалярную физическую величину, характеризующую энергетическое состояние поля в данной точке пространства и численно равную отношению потенциальной энергии, которой обладает пробный положительный заряд, помещенный в эту точку, к значению заряда. Потенциал — это энергетическая характеристика поля в отличие от напряженности поля, являющейся силовой характеристикой поля. Необходимо отметить, что потенциальная энергия заряда в данной точке поля, а значит, и потенциал зависят от выбора нулевой точки. Нулевой эта точка называется потому, что потенциальную энергию (соответственно потенциал) заряда, помещенного в эту точку поля, уславливаются считать равной нулю. Нулевой уровень потенциальной энергии выбирается произвольно, поэтому потенциал можно определить только с точностью до некоторой постоянной, значение которой зависит от того, в какой точке пространства выбрано его нулевое значение. В технике принято считать нулевой точкой любую заземленную точку, т.е. соединенную проводником с землей. В физике за начало отсчета потенциальной энергии (и потенциала) принимается любая точка, бесконечно удаленная от зарядов, создающих поле. Если нулевая точка выбрана, то потенциальная энергия (соответственно и потенциал в данной точке) заряда q0 становится определенной величиной. На расстоянии r от точечного заряда q, создающего поле, потенциал определяется формулой
При указанном выше выборе нулевой точки потенциал в любой точке поля, создаваемого положительным зарядом q, положителен, а поля, создаваемого отрицательным зарядом, отрицателен:
По этой формуле можно рассчитывать потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R в точках, находящихся на поверхности сферы и вне ее. Внутри сферы потенциал такой же, как и на поверхности, т.е.
Если электростатическое поле создается системой зарядов, то имеет место принцип суперпозиции: потенциал в любой точке такого поля равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:
Зная потенциал
Потенциальная энергия заряда q0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q0 из данной точки в нулевую. Из последней формулы имеем
Потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в нулевую (в бесконечность). Потенциальная энергия заряда q0 помещенного в электростатическое поле точечного заряда q на расстоянии r от него,
Если q и q0 — одноименные заряды, то Отметим еще раз, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение Wp выбрано ее значение при r = бесконечности. Если электростатическое поле образовано системой n точечных электрических зарядов, то потенциальная энергия системы определяется по формуле
где Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает электростатическое поле, стационарное поле температуры, поле давления, поле потенциала скорости в гидродинамике. Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона. Это уравнение имеет вид: где В трёхмерной декартовой системе координат уравнение принимает форму:
В декартовой системе координат оператор Лапласа записывается в форме
Если f стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа (уравнение Лапласа — частный случай уравнения Пуассона):
Уравнение Пуассона может быть решено с использованием функции Грина; см., например, статью экранированное уравнение Пуассона. Есть различные методы для получения численных решений. Например, используется итерационный алгоритм — «релаксационный метод». Уравнение Пуассона является одним из важнейших уравнений электростатики. Нахождение φ для данного f — важная практическая задача, поскольку это обычный путь для нахождения электростатического потенциала для данного распределения заряда. В единицах системы СИ:
где В единицах системы СГС:
В области пространства, где нет непарной плотности заряда, имеем:
и уравнение для потенциала превращается в уравнение Лапласа:
Уравнение Пуассона выводится из закона Гаусса и определения статического потенциала:
2. Волновая функция, ее смысл. Операторы координаты и импульса. Средние значения физических величин. Соотношение неопределенностей для координат и импульса. Уравнение Шредингера. Волнова́я фу́нкция, или пси-функция
где Согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точкеконфигурационного пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении. В координатном представлении волновая функция
Тогда в заданном квантовом состоянии системы, описываемом волновой функцией Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.
Дата добавления: 2015-08-31; Просмотров: 1487; Нарушение авторских прав?; Мы поможем в написании вашей работы! |