Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные факторы, влияющие на прочность кладки при сжатии. Прочность кирпичной кладки при растяжении, изгибе и срезе. Прочность кладки при местном сжатии




Виды каменных и армокаменных конструкций, область их применения. Каменные и армокаменные конструкции жилых, гражданских и промышленных зданий. Расчет элементов каменных конструкций.

Каменные конструкции, общие сведения. Физико-механические свойства каменных кладок.

Каменная кладка состоит из искусственных или природных камней, объединенных в монолитный материал с помощью раствора.

Достоинством каменных конструкций является огнестойкость, долговечность, хорошая тепло- и звукоизоляция и небольшие эксплуатационные расходы. Во многих случаях каменные материалы являются местными. К недостаткам их относятся большая собственная масса и значительные затраты ручного труда при строительстве. Для устранения этих недостатков современные каменные конструкции в ряде случаев проектируют с применением крупных блоков и панелей, устанавливаемых на место с помощью механизмов. Такие конструкции обеспечивают повышение производительности труда и снижение себестоимости строительства, однако требуют широкого применения механизмов. Поэтому каменные конструкции из мелкоштучных материалов до настоящего времени находят самое широкое применение в строительстве.

При необходимости увеличения несущей способности каменной кладки применяют разные способы ее усиления стальной арматурой. Такую кладку называют армокаменной. Использование армокаменной кладки позволяет значительно расширить область применения каменных материалов в строительных конструкциях.

 

Каменные материалы. В качестве каменных материалов для кладок используют штучные камни массой не более 40 кг и каменные изделия, изготовленные в заводских условиях, масса которых ограничивается грузоподъемностью транспортного я монтажного оборудования. К штучным каменным материалам относят: кирпич керамический, керамические камни, природные камни правильной формы и бутовые (неправильной формы), бетонные камни. Каменные изделия выпускают в виде бетонных блоков различного назначения, блоков из кирпича и керамических камней, вибропанелей из кирпича, блоков из природных камней и т. п.

Каменные материалы классифицируют: по происхождению: а) природные камни, добываемые в каменных карьерах (каменные блоки, бут); б) искусственные камни, изготовляемые путем обжига (кирпич, керамические камни), и необжиговые камни (кирпич силикатный, шлаковый, бетонные камни из тяжелого и легкого бетона); по структуре: а) полнотелый кирпич и сплошные камни; б) пустотелый кирпич и камни с пустотами разной формы.

Для ручной каменной кладки применяют кирпич следующих видов: керамический обыкновенный пластического и полусухого прессования, керамический пустотелый пластического прессования, кирпич силикатный, кирпич из трепелов и диатомитов.

Керамический полнотелый и силикатный кирпичи применяют для кладки несущих стен и столбов; керамический пустотелый — для кладки наружных стен отапливаемых зданий. Керамические и бетонные камни используют при возведении стен и перегородок, а крупные блоки из тяжелого бетона, кроме того, применяют для кладки стен фундаментов.

Природные камни из тяжелых пород (известняки, песчаники, гранит) используют в основном для облицовки стен и кладки фундаментов, а из камней легких пород (туф, известняк, ракушечник) в некоторых районах возводят стены.

Основной характеристикой каменных материалов, применяемых в несущих конструкциях, является их прочность, характеризуемая маркой, которая обозначает временное сопротивление образцов при сжатии.

Арматура. Для армирования каменных конструкций следует применять: в качестве сетчатого армирования — горячекатаную круглую сталь класса А-1 или арматурную проволоку периодического профиля класса Вр-1 диаметром 3...8 мм, в качестве продольной и поперечной арматуры — сталь классов А-1, A-11 и Вр-1 диаметром 5...8 мм. Соединительные элементы, закладные детали и стальные обоймы следует изготовлять из прокатной листовой стали, фасонных профилей, полосовой стали.

Расчет каменных и армокаменных конструкций ведется по методу предельного состояние. При этом учитываются 2 группы предельных состояний: первая по несущей способности (прочности и устойчивости), вторая — по образованию и раскрытию трещин (швов кладки) и деформациям. Расчет по первой группе выполняют всегда и для всех видов конструкций. Расчет по второй группе производят для конструкций, где не допускаются трещины (облицовка резервуаров) или требуется неполное их раскрытие (внецентренносжатые элементы с большими эксцентриситетами), ограничиваются деформации по условиям совместной работы смежных конструкций (стеновые заполнения каркасов зданий) и др. Цель расчета состоит в подборе сечений элементов или проверке имеющихся сечений. Вычисленные напряжения, деформации и ширина раскрытия трещин не должны превышать предельных значений, установленных нормами.

Расчет по несущей способности производят из условия, что расчетное усилие N меньше или равно расчетной несущей способности . Расчетное усилие вычисляют при действии нагрузок, взятых с коэффициентом надежности при неблагоприятном их сочетании. Расчетную несущую способность определяют в зависимости от геометрических размеров сечения, расчетного сопротивления кладки R и коэффициентов условий работы. Расчетное сопротивление, учитывающее возможность снижения прочности, связанное с естественным разбросом механических свойств, учитывается коэффициентом надежности и определяется по формуле

где — временное сопротивление кладки; — принимают для всех видов кладок, работающих на сжатие, равным 2, на растяжение — 2,25. Другие обстоятельства, влияющие на несущую способность и деформативность, учитываются коэффициентом условий работы, на который умножается величина Я.

 

При центральном сжатии напряжения по сечению элемента распределяются равномерно. Разрушение таких элементов происходит в зависимости от их гибкости: коротких элементов — в результате исчерпания прочностных свойств кладки (), длинных элементов — в результате потери устойчивости при критических напряжениях (), меньших предела прочности кладки R .

Расчет прочности центрально-сжатых элементов каменных конструкций следует производить по формуле

, где N — расчетная продольная сила; m, — коэффициент, учитывающий влияние прогиба сжатых элементов на их несущую способность при длительной нагрузке; — коэффициент продольного изгиба; R — расчетное сопротивление кладки сжатию; А — площадь сечения элемента.

Коэффициент зависит от характеристики упругих свойств кладки а и гибкости элемента.

Коэфициент отражает влияние ползучести при длительном действии нагрузки:

Где - коэффициент, зависящий от гибкости элемента и принимается по таблице. - расчетная продольная сила от длительного действия нагрузки.

Подбор сечений центрально. сжатых неармированных элементов производят с помощью последовательных приближений. 3а даваясь маркой и видом камня и раствора по нормам, находят расчетные сопротивления камня сжатию. Приняв в первом приближении mg=1, =0,9, по формуле вычисляют размеры столба или стены. По найденным размерам определяют гибкость элемента, затем по табл. 11.4 и формуле уточняют значения т„и у и производят повторный расчет.

Внецентренное сжатие.

На внецентренное сжатие работают конструкции каменных зданий, в которых продольная сжимающая сила N приложена с эксцентриситетом. Опыты показывают, что характер напряженного состояния каменной кладки внецентренно сжатых элементов в основном зависит от эксцентриситета продольной силы e0. Пpи небольших эксцентриситетах все сечение сжато, эпюра напряжений имеет криволинейное очертание. По мере увеличения эксцентриситета сжимающие напряжения со стороны, удаленной от силы, уменьшаются, а затем меняют знак, т. е. на некоторой части сечения возникает растяжение. При достаточно больших эксцентриситетах даже при малых нагрузках напряжения в растянутой зоне элемента могут превысить предельное сопротивление кладки растяжению при изгибе и в растянутой зоне появятся горизонтальные трещины, распространяющиеся на некоторую глубину t (). После образования трещины продолжает работать под нагрузкой только часть сечения высотой h — t. Эксцентриситет приложения продольной силы N для этой части сечения оказывается уменьшенным на величину t/2, т. е. сечение работает в условиях, приближающихся к центральному сжатию. Поскольку сжимающие напряжения распределены по сечению неравномерно, временное сопротивление кладки сжатию достигается первоначально в краевых участках. Однако при этом несущая способность не исчерпывается, так как в наиболее нагруженных участках вследствие ползучести развиваются значительные деформации, и тогда включаются в работу менее загруженные участки сжатой зоны и тем самым повышают ее временное сопротивление по сравнению с временным сопротивлением при центральном сжатии. Это повышение учитывается при расчете коэффициентом , который для кирпичной кладки прямоугольного сечения находят из выражения ; при е=О (центральное сжатие) =1.

Вследствие сложности напряженного состояния внецентренно сжатых элементов при расчете их прочности исходят из эмпирических формул, основанных на следующих допущениях: растянутая зона, если она имеется, исключается из работы, напряжения в сжатой зоне считаются распределенными равномерно (рис. 12.3). С учетом гибкости, длительности действия нагрузки и эффекта обоймы расчетное условие имеет вид

, (12.3)

где N — расчетная продольная сила; R — расчетное сопротивление кладки сжатию; А, — площадь сжатой части сечения элемента при прямоугольной эпюре напряжений, определяемая из условия, что ее центр тяжести совпадает с точкой приложения продольной силы N.

Местное сжатие (смятие)

В случаях, когда опирание какой-либо конструкции происходит не по всему сечению каменной кладки стены, фундамента, а только по его части, имеет место местное сжатие кладки. Сопротивление каменной кладки местному сжатию больше чем осевому, т.к. прилегающие к нагруженному участку смежные незагруженные зоны препятствуют его деформации и тем самым увеличивают в той или иной его степени несущую способность. Расчетное сопротивление при смятие

где (12.6)

R — расчетное сопротивление кладки при осевом сжатии; A — площадь смятия (местного сжатия), на которую передается нагрузка (рис. 12.4); А — расчетная площадь сечения при местном сжатии; — коэффициент, учитывающий максимально допустимое увеличение — по отношению к R, зависящий от материала кладки и места приложения нагрузки, колеблется в пределах от 1 до 2. Несущую способность элемента при местном сжатии проверяют по формуле

где Nloc –продольная сжимающая сила от местной нагрузки, - коэффициент полноты эпюры давления от местной нагрузки: при равномерном распределении давления (передача нагрузки через распределительную плиту) =1, при треугольной эпюре (передача нагрузки через слой раствора) =0,5; d — коэффициент, учитывающий пластическую работу материала, для кирпичной и виброкирпичной кладки d= 1,5 — 0,5 .

Если под опорами огибаемых элементов не требуется установка распределительных плит, то допускается принимать без специального расчета =0,75 (для кладок из полнотелого кирпича, сплошных камней и крупных блоков из тяжелого бетона).

При совместном действии местной (опорные реакции балок, ферм и др.) и основной нагрузок (вес вышележащей кладки и нагрузка, передающаяся на эту «ладку) расчет на смятие производят раздельно: сначала только на местную нагрузку, потом — на сумму местной и основной нагрузок.

Изгиб

На изгиб работают наружные стены многоэтажных зданий при действии ветровой нагрузки, наружные плиты контрфорсных подпорных стен и другие элементы. расчет каменной кладки на изгиб производят, исходя из предположения ее упругой работы:

(12.8)

где М — расчетный изгибающий момент; R — расчетное сопротивление кладки растяжению при изгибе по перевязанному сечению (см. табл. 11.2); W — момент сопротивления сечения кладки при упругой ее работе. На действие поперечной силы изгибаемые элементы рассчитывают по формуле

где R — расчетное сопротивление кладки главным растягивающим напряжениям при изгибе; z — плечо внутренней пары сил, для прямоугольного сечения z=2/3h; Ь и h — размеры сечения. Проектирование элементов каменных конструкций, работающих на изгиб по неперевязанному сечению, не допускается.

Растяжение и срез

Каменные конструкции, работающие на осевое растяжение (например, стенки круглых резервуаров, силосов и других емкостей), рассчитывают на прочность по формуле

N<

где N — расчетная осевая сила при растяжении; — расчетное сопротивление кладки растяжению; А„— расчетная площадь сечения «нетто», т. е. за вычетом пустот в камнях.

Проектирование элементов каменных конструкций, работающих на осевое растяжение по неперевязанному шву, не допускается.

На срез по горизонтальному шву работают, например, элементы каменной кладки, воспринимающие распор от затяжки сводов. Сопротивление каменной кладки срезу по горизонтальным неперевязанным швам складывается из собственной несущей способности

 

19 Балочные сборные перекрытия. Компоновка конструктивной схемыперекрытия. Расчет и конструирование плит армированных сварными сетками, каркасами инапрягаемой арматурой.

В состав конструкции балочного панельного сборного перекрытия входят плиты и поддерживающие их балки, называемые ригелями, или главными балкам. Ригели опираются на колонны и стены; их направление может быть продольным (вдоль здания) или поперечным. Ригели вместе с колоннами образуют рамы.

В поперечном направлении перекрытие может иметь два-три пролета для гражданских зданий и пять-шесть пролетов для промышленных. Размеры пролета ригелей промышленных зданий определяются общей компоновкой конструктивной схемы перекрытия, нагрузкой от технологического оборудования.

Компоновка конструктивной схемы перекрытия заключается в выборе направления ригелей, установлении их шага, размеров пролета, типа и размеров плит перекрытий. При этом учитывают:

временную нагрузку, назначение здания, архитектурно-планировочное решение;

общую компоновку конструкции всего здания. В зданиях, где пространственная жесткость в поперечном направлении создается рамами с жесткими узлами, ригели располагают в поперечном направлении, а панели в продольном. В жилых и общественных зданиях ригели могут иметь продольное направление, а плиты — поперечное. В каждом случае выбирают соответствующую сетку колонн;

технико-экономические показатели конструкции перекрытия. Расход железобетона на перекрытие должен быть минимальным, а масса элементов и их габариты должны быть возможно более крупными и соответствующими грузоподъемности монтажных кранов и транспортных средств.

При проектировании разрабатывают несколько вариантов конструктивных схем перекрытия и на основании сравнения выбирают наиболее экономичную.

Общий расход бетона и стали на устройство железобетонного перекрытия складывается из соответствующего расхода этих материалов на плиты, ригели и колонны. Наибольший расход железобетона — около 65 % общего количества — приходится на плиты. Поэтому экономичное решение конструкции плит приобретает важнейшее значение.

Для предварительно напряженных плит применяют бетон класса B15, B25, для плит без предварительного напряжения — бетон класса B15, В20.

Расчет плит. Расчетный пролет плит Lо принимают равным расстоянию между осями ее опор (рис. 11.5); при опирании по верху ригелей Lо=L — Ь/2 (Ь — ширина ригеля); при опирании на полки ригелей Lo=L — а — Ь (а - размер полки). При опирании одним концом на ригель, другим на стенку расчетный пролет равен расстоянию от оси опоры на стене до оси опоры в ригеле.

Высота сечения плиты h должна быть подобрана так, чтобы наряду с условиями прочности были удовлетворены требования жесткости (предельных прогибов). При пролетах 5...7 м высота сечения плиты определяется главным образом требованиями жесткости.

Высоту сечения предварительно напряженных плит можно предварительно назначать равной: h=Lo/20— для ребристых, h=Lo/30 — для пустотных плит.

При расчете прочности по изгибающему моменту ширина ребра равна суммарной ширине всех ребер плиты; расчетную ширину сжатой полки принимают равной полной ширине панели. При малой толщине сжатой полки, когда '/h<0,1, ширина полки, вводимая в расчет, не должна превышать

где n — число ребер в поперечном сечении панели.

В ребристой панели ребрами вниз при толщине , но при наличии поперечных ребер, вводимую в расчет ширину полки принимают равной полной ширине панели.

Таким образом, расчет прочности плит сводится к расчету таврового сечения с полкой в сжатой зоне. В большинстве случаев нейтральная ось проходит в пределах толщины сжатой полки, поэтому, определив

, затем находят площадь растянутой арматуры

Расчетную ширину сечения плиты ребрами вверх принимают равной суммарной ширине ребер и расчет ведут как для прямоугольного сечения.

Поперечную арматуру плиты рассчитывают из условия прочности по наклонному сечению по расчетной ширине ребра b, равной суммарной ширине всех ребер сечения. В многопустотных плитах высотой менее 300 мм допускается поперечную арматуру не устанавливать, если она не требуется по расчету.

По образованию или раскрытию трещин, а также по прогибам плиту рассчитывают в зависимости от категории требований трещиностойкости.

При расчете прогибов сечение панелей с пустотами приводят к эквивалентному двутавровому сечению. Для панелей с круглыми пустотами эквивалентное двутавровое сечение находят из условия, что площадь круглого отверстия диаметром d равна площади квадратного отверстия со стороной 0,9d.

Полка плиты работает на местный изгиб как частично защемленная на опорах пролетом Lo, равным расстоянию в свету между ребрами. В ребристых плитах ребрами вниз защемление полки создают заливкой бетоном швов, препятствующей повороту ребра (рис. 11.7, а). Изгибающий момент:

.

Армирование плит. Применяют сварные сетки, и каркасы из обыкновенной арматурной проволоки и горячекатаной арматуры периодического профиля (рис. 11.8). В качестве напрягаемой продольной арматуры применяют стержневую арматуру классов А-IV, А-V, Ат-IVc, Ат-V, высокопрочную проволоку и канаты. Армировать можно без предварительного напряжения арматуры, если пролет панели меньше 6 м.

Продольную рабочую арматуру располагают по всей ширине нижней полки сечения пустотных панелей и в ребрах ребристых панелей.

Поперечные стержни объединяют с продольной монтажной или рабочей ненапрягаемой арматурой в плоские сварные каркасы, которые размещают в ребрах плит. Плоские сварные каркасы в круглопустотных плитах размещают только на приопорных участках через одно два ребра.

плиты из тяжелого и легкого бетонов армируют продольной напрягаемой арматурой и сварными сетками. По четырем углам плит закладывают монтажные пет- ли. В местах установки петель сплошные панели армируют дополнительными верхними сетками. Пример армирования ребристой панели перекрытия промышленного здания приведен на рис. 11.9. Номинальная ширина такой панели — 1,5 м. Применяют также плиты шириной 3 м.

Монтажные соединения плит всех типов выполняют сваркой стальных закладных деталей и заполнением бетоном швов между плитами (рис. 11.10,а). В продольных боковых гранях плит предусматривают впадины, предназначенные для образования (после замоноличивания швов) прерывистых шпонок, обеспечивающих совместную работу плит на сдвиг в вертикальном и горизонтальном направлениях. При таком соединении сборных элементов перекрытия представляют собой жесткие горизонтальные диафрагмы.

 




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 129; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.