Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общее устройство




НИВЕЛИРОВАНИЕ

Различают два способа геометрического нивелирования: «из середины» и «вперед».

Допустим, между точками А и В на местности необходимо определить превышение h. Нивелир размещают между этими точками, на которых вертикально устанавливают рейки. Приводят трубу в горизонтальное положение. Нивелирование, как правило, начинают с репера (Rp) или с точки, отметка которой известна (на рисунке 6 - точка А) Эту точку называют задней; передняя точка та, отметку которой определяют.

Рисунок 6 – Схема нивелирования «из середины»

 

Работу на станции выполняют в следующем порядке: сначала берут отсчёт по рабочей (чёрной) стороне задней рейки ар, затем отсчёт по рабочей (чёрной) стороне передней рейкивр, переднюю рейку поворачивают и берут отсчёт по контрольной (красной) стороне передней рейкивр, последний берут отсчёт по контрольной (красной) стороне задней рейкиар. Превышение получают как разность заднего и переднего отсчётов:

hp = ар- вр, hк =ак – вк,

причем

|hp–hк| ≤ 5 мм.

При невыполнении этого условия работу на станции повторяют.

Отметку точки HB вычисляют по известной высотеHA

HB=HA+hср,

где

hср= (hр+hк) / 2.

Точки, через которые передают высоты, называются связующими (на рисунке 6 точки А и В); другие точки, на которых были сняты отсчёты с этой станции называются промежуточными (т. C), отсчёты на них берут только по рабочей стороне рейки. Отметки промежуточных точек находят через горизонт прибора Hi, т.е. высоту визирной оси инструмента над уровенной поверхностью.

ГП=Hi = HA+ар = HB +вр.

Тогда

Hс =Hi -ср.

Все результаты измерений и вычислений записывают в журнал нивелирования.

 

Тахеометрическая съемка

Тахеометрическая съемка – комбинированная съемка, в процессе которой одновременно определяют плановое и высотное положение точек, что позволяет сразу получать топографический план местности. Тахеометрия в буквальном переводе означает быстрое измерение.
Положение точек определяют относительно пунктов съемочного обоснования: плановое – полярным способом, высотное – тригонометрическим нивелированием. Длины полярных расстояний и густота пикетных (реечных) точек (максимальное расстояние между ними) регламентированы в инструкции по топографо-геодезическим работам.

Полярная система координат

Помимо прямоугольной (декартовой) системы, существуют и другие подходы к построению координатной сетки плоскости и пространства. В частности, широкое распространение получила полярная система координат, которая невероятно удобна для решения целого спектра практических задач. Чтобы определить полярную систему координат на плоскости, достаточно зафиксировать начало координат и задать единичный координатный вектор . Точка называется полюсом, а луч , сонаправленный с вектором – полярной осью. Графический шаблон – проще некуда, одна точка, один вектор, одна линия:



На практике вместо вектора можно где-нибудь в углу указать масштаб.

Любая отличная от начала координат точка плоскости однозначно определяется своим расстоянием от полюса и ориентированным углом между полярной осью и отрезком :



Для самого полюса , а угол не определён. Число называют полярным радиусом точки или первой полярной координатой. Расстояние не может быть отрицательным, поэтому полярный радиус любой точки . Первую полярную координату также обозначают греческой буквой («ро»), но я привык к латинскому варианту, и в дальнейшем буду использовать его.

Число называют полярным углом данной точки или второй полярной координатой. Полярный угол стандартно изменяется в пределах (так называемые главные значения угла). Пару называют полярными координатами точки . Из легко найти и их конкретные


 

 

Съемку выполняют либо теодолитом, либо тахеометром-автоматом; в комплект приборов для съемки также входит рейка.
При производстве тахеометрической съемки используют геодезический прибор тахеометр, предназначенный для измерения горизонтальных и вертикальных углов, длин линий и превышений.

Теодолит, имеющий вертикальный круг, устройство для измерения расстояний и буссоль для ориентирования лимба, относится к теодолитам-тахеометрам.
Теодолитами-тахеометрами является большинство теодолитов технической точности, например Т30.

Съемку выполняют либо теодолитом, либо тахеометром-автоматом; в комплект приборов для съемки также входит рейка.
Наиболее удобными для выполнения тахеометрической съемки являются тахеометры с номограммным определением превышений и горизонтальных проложений линий. В настоящее время широко используются электронные тахеометры.

Производство тахеометрической съемки

Тахеометрическая съемка выполняется с пунктов съемочного обоснования, их называют станциями. Чаще всего в качестве съемочного обоснования используют теодолитно-высотные ходы.
Характерные точки ситуации и рельефа называют реечными точками или пикетами. Реечные точки на местности не закрепляют.
Для определения планового положения точек съемочной сети измеряют горизонтальные углы и длины сторон. Высоты точек определяют тригонометрическим нивелированием. Углы наклона измеряют при двух положениях вертикального круга в прямом и обратном направлениях. Расхождение в превышениях не допускается более 4 см на каждые 100 метров расстояния.

Существует два способа начала работы – стояние на точке с известными координатами или установка инструмента между точками с известными координатами (обратная засечка).

Угол установки инструмента при обратной засечке должен быть отличным от 180°; если это несколько точек, они должны находиться примерно на одинаковых расстояниях.


Работу на станции при тахеометрической съемке выполняют следующим образом.
Устанавливают теодолит в рабочее положение над точкой хода (центрируют и горизонтируют прибор), измеряют высоту прибора і, отмечают её на рейке и записывают в журнал.
При круге право «КП» наводят зрительную трубу на соседнюю (заднюю или переднюю) точку хода, в которой установлена рейка, и берут отсчет по вертикальному кругу. Далее переводят трубу через зенит и ориентируют лимб по стороне хода, т. е. по горизонтальному кругу устанавливают отсчет 0°, закрепляют алидаду и, вращая лимб, направляют зрительную трубу на рейку. Затем берут отсчет по вертикальному кругу при круге лево «КЛ» и вычисляют место нуля (МО) вертикального круга. Отсчеты и значение МО записывают в журнал.
После указанных действий приступают к съемке характерных точек ситуации и рельефа на станции.


На реечные точки устанавливают рейку. При круге лево «КЛ» и ориентированном лимбе, вращая алидаду, последовательно наводят зрительную трубу на реечные точки, делают отсчеты по дальномерным нитям, горизонтальному и вертикальному кругам и записывают их в журнале. Средний штрих сетки нитей зрительной трубы наводят на высоту прибора, отмеченную на рейке. Если высота прибора на рейке не видна из-за помех, то наводят средний штрих на определенное место на рейке (например: 2, 2,5 м или 3 м). Высоту визирования записывают в журнал.
После окончания съемки на станции зрительную трубу снова наводят на точку хода, по которой ориентировали теодолит, и берут отсчет по горизонтальному кругу. Расхождение между 0° и взятым отсчетом допускается не более ± 5'.
Реечные точки должны равномерно покрывать территорию съемки. Расстояния от станции до реечных точек и расстояния между реечными точками не должны превышать допусков, указанных в инструкции по тахеометрической съемке.

Для того чтобы установить реальные координаты пунктов теодолитного хода необходимо выполнить привязку этого хода к некоторой системе координат. Привязка выполняется к некоторым пунктам на местности, которые имеют известные координаты. Это могут быть пункты государственной геодезической сети (пункты A и В на) либо любые иные пункты, координаты которых измерены с помощью приборов спутникового позиционирования. В случае, если в пункте геодезической сети есть возможность точно установить направление на север и соответственно угол, то достаточно выполнить привязку теодолитного хода только к одному известному пункту. Иначе привязка должна выполняться, по крайней мере, к двум известным пунктам, обычно в начале и в конце теодолитного хода. Если ход замкнутый, то привязку надо делать в начале и в середине хода.


На каждой станции одновременно с заполнением журнала составляется абрис – схематический чертеж, на котором зарисованы положения реечных точек с указанием их номеров, проведены контуры местности, указан скелет рельефа и подписаны угодья.


Абрис тахеометрической съемки.

 

 

Скелет рельефа изображают в виде линий, соединяющих точки, между которыми на местности ровный скат, т. е. нет перегибов. Стрелками указывают направление ската. Четко выраженные формы рельефа показывают на абрисе горизонталями. Контуры ситуации и снимаемые объекты обозначают условными знаками или надписями.
Обработка результатов тахеометрической съемки включает в себя следующие работы:

· вычисление координат и отметок пунктов тахеометрических ходов;

· вычисление отметок реечных точек;

· построение плана тахеометрической съемки.

· Заполнение ведомости тахеометрической съемки.

 

Электронные тахеометры

Электронный тахеометр объединяет теодолит, светодальномер и счетное устройство, позволяет выполнять угловые и линейные измерения и осуществлять совместную обработку результатов этих измерений.
Тахеометры, в которых все устройства (угломерные, дальномерные, зрительная труба, клавиатура, процессор) объединены в один механизм, называются интегрированными тахеометрами.
Тахеометры, которые состоят из отдельно сконструированного теодолита (электронного или оптического) и светодальномера, называют модульными тахеометрами.
В электронных тахеометрах расстояния измеряются по разности фаз испускаемого и отраженного луча (фазовый метод), иногда (в некоторых современных моделях) по времени прохождения луча лазера до отражателя и обратно (импульсный метод). Точность измерения зависит от технических возможностей модели тахеометра, а также от многих внешних параметров: температуры воздуха, давления, влажности и т. п. Диапазон измерения расстояний зависит также от режима работы тахеометра (отражательный или безотражательный). Дальность измерений в безотражательном режиме напрямую зависит от отражающих свойств поверхности, на которую производится измерение. Дальность измерений на светлую гладкую поверхность (штукатурка, кафельная плитка и пр.) в несколько раз превышает максимально возможное расстояние, измеренное на темную поверхность. Максимальная дальность линейных измерений: для режима с отражателем (призмой) – до пяти километров (при нескольких призмах еще дальше); для безотражательного режима – до одного километра. Модели тахеометров, которые имеют безотражательный режим могут измерять расстояния практически до любой поверхности, однако следует с осторожностью относиться к результатам измерений, проводимым сквозь ветки, листья, потому как сигнал может отразится от промежуточного предмета.
Существуют модели тахеометров, обладающих дальномером, совмещенным с системой фокусировки зрительной трубы. Преимущество таких приборов заключается в том, что измерение расстояний производится именно на тот объект, по которому в данный момент выставлена зрительная труба прибора.
Для выполнения съёмки электронный тахеометр устанавливают на станции и настраивают его в соответствии с условиями измерений. На пикетах ставят специальные вешки с отражателями, при наведении на которые автоматически определяются расстояние, горизонтальные и вертикальные углы. Если тахеометр имеет безотражательный режим, то можно производить измерения на реечные точки, в которых нет возможности установить вешку с отражателем. Счетное устройство тахеометра во время измерений автоматически вычисляет горизонтальное проложение, приращения координат и превышение h. Все данные, полученные в ходе измерений, сохраняются в специальном запоминающем устройстве (накопителе информации). Они могут быть переданы с помощью интерфейсного кабеля на компьютер, где с использованием специальной программы выполняется окончательная обработка результатов измерений для построения цифровой модели местности или топографического плана. Совместное использование электронного тахеометра с компьютером позволяет полностью автоматизировать процесс построения модели местности.
В настоящее время наиболее широкое распространение получили электронные тахеометры зарубежных фирм Sokkia, Topcon, Nicon, Pentax, Leica, Trimble. Они имеют встроенное программное обеспечение для производства практически всего спектра геодезических работ: развитие геодезических сетей; съемка и вынос в натуру; решение задач координатной геометрии (прямая и обратная геодезическая задача, расчет площадей, вычисление засечек). Угловая точность у таких приборов может быть от 1" до 5" в зависимости от класса точности.

Тахеометр. Назначение, виды, эксплуатация.

Современный рынок измерительных инструментов чрезвычайно богат разнообразием всевозможного инструментария. Одним из широко используемых геодезических измерительных приборов нового поколения можно назвать тахеометр, служащий для измерения дальних расстояний, высот и углов в линейных плоскостях с помощью зрительного контакта.

Первые модели тахеометров появились не так давно, в семидесятых годах XX века. Это был некоторый симбиоз оптического теодолита и светодальномера, объединённых чуть позднее в общую корпусную коробку, и оснащением управляющей настройками и замерами панелью, позволяющую вводить значения углов. Настоящим прорывом в эволюции тахеометров стало использование электронной оптической системы отсчёта углов вместо оптической.

 


Выяснив, что такое тахеометр, следует определить сферы его применения. Использование этого инструмент практикуется для определения координат и превышений точек географической местности в следующих случаях:

  • наземная топографическая съёмка местности для разработки топологических карт;
  • геодезические и строительные разбивочные работы: вынос на местность взаимного расположения (координат) и превышений проектных решений;
  • определение прямоугольных и полярных позиционных величин;
  • измерение параметров объектов, к которым нет физического доступа;
  • если предусмотрено конструкцией, тахеометр может выполнять сопутствующие вычисления;
  • прочие топологические работы, задействованные при строительстве, археологических раскопках, обустройстве дорожного полотна.

Точность и дальность производимых замеров зависит от конкретной модели тахеометра, его конструкции и внешних климатических характеристик: температуры воздушной среды, атмосферного давления, показателей относительной и абсолютной влажности.

Виды и классификация

Классификация тахеометров достаточно развернута и определяется свойствами, функциями, принципами использования, заложенными в ее основу.

Исходя из сфер применения, можно выделить следующие категории тахеометров:

  • строительные, обеспечивающие геодезическое сопровождение съемки;
  • технические, содержащие базовый набор функций (установка станции, вынос точек) и решающие простейшие, рутинные задачи;
  • инженерные, обладающие исключительной достоверностью полученных данных и расширенным функционалом и применяемые в исполнительных съёмках и сложных разбивочных работах.

По принципу работы принято за основу следующее деление тахеометров на:

  • оптические (номограммные) – сложные оптические теодолиты, оборудованные специализированным номограммным кипрегелем;
  • электронные (цифровые) – устройство с внутренней памятью под запись и хранение результатов замеров и вычислений, в котором конструктивным образом объединены электронный теодолит и световой дальномер;
  • автоматизированные (роботизированные), дающие идеальное сочетание точности и эффективности замеров они применимы для мониторингов, сложных изыскательских и инженерных задач.

Конструктивное исполнение подразделяет все семейство тахеометров на:

  • модульные, состоящие из отдельных оптического или электронного теодолита и светодальномера;
  • интегрированные, представляющие собой единый механизм из составляющих его зрительной трубы, панели управления и процессора;
  • неповторительные с плотно закреплённым на подставке лимбом.

 

Режим работы инструмента определяет диапазон измерения дальности расстояний и классифицирует тип тахеометра на:

  • отражательный (призменный) – до 5 км и более;
  • безотражательный, имеющий возможность производить замеры расстояний до произвольной плоскости в диапазоне до полутора километров. Использование этого режима обладает множеством нюансов, так как дальность измерений значительно зависит от отражающих свойств обрабатываемой поверхности. Для гладкого и светлого объекта дальность значительно превышает аналогичный показатель, выполненный для темного или рельефного.

На рынке рассчитанных на проведение геодезических исследований измерительных приборов сейчас присутствуют модели электронных тахеометров, оснащённых сочетающимся с системой фокусирования визирной трубы дальномером. Преимущество такого инструмента состоит в возможности измерения расстояний объекта, на который обращена визирная труба.

Все чаще и чаще производители анонсируют модели тахеометров, оснащённых системой GPS. Наличие обычного GPS-навигатора с функцией Bluetooth или приемника геодезического класса GNSS GPS-поиск позволит легко и быстро обнаружить цель по заданным координатам.

Тахеометр состоит из двух ключевых частей:

  • неподвижная часть – платформа прибора, представляющее собой трёхопорное устройство (треггер), оснащённый пузырьковыми двухплоскостными уровнями, круглым или электронным уровнем;
  • подвижная часть является совокупностью следующих компонентов:
  • алидада в форме колонки;
  • панель управления с монитором;
  • зрительная труба;
  • визир оптического отвеса;
  • аккумуляторная батарея;
  • зажимные микрометренные винты.

Любой тахеометр оборудован системой компенсаторов, автоматически выравнивающих инструмент при отклонении его положения относительно уровня горизонтали.




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 2156; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.