Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение задачи 2




Рассмотрим пример построения линии пересечения конуса и сферы способом секущих плоскостей.

Задано: конус (высота H=100 мм, радиус основания R=45 мм), и сфера (радиус r =35 мм). Центр сферы смещен вверх на расстояние a= 40 мм от основания конуса и вправо на расстояние b =25 мм от оси вращения.

Последовательность построения линии пересечения конуса и сферы такова:

1. Строим две проекции конуса и сферы по исходным данным (рис. 4а).

2. Отмечаем на фронтальной проекции опорные точки A2 и B2 – точки пересечения очерковых линий конуса со сферой и находим горизонтальные проекции A1 и B1 точек А и В (рис. к 4б). Проекции линии пересечения двух поверхностей находятся между точками A2 и B2, т.е. в зоне наложения проекций конуса и сферы.

3. Строим промежуточную точку D линии пересечения (рисунок 4в). Для этого:

– строим фронтальную проекцию G2 вспомогательной секущей плоскости G. Эта плоскость пересекает коническую поверхность по окружности m2 радиусом RК, а сферу – по окружности n2 радиусом RС;

– строим горизонтальные m1 и n1 проекции окружностей m и n и определяем точки D1 и D¢1 пересечения этих окружностей;

– строим фронтальные проекции точек D2 и D¢2 точки D. Для этого проводим из точек D1 и D¢1 линии связи до пересечения с фронтальной проекцией m2 и n2 окружностей m и n в точках D2 и D¢2.

На чертеже точки обозначенные буквами со штрихом не обозначены.

4. Повторяем предыдущую операцию необходимое число раз и определяем проекции промежуточных точек C, E, F, G.

5. Соединяем полученные точки линией с учетом её видимости в проекциях (рис. 4г). Обводим штриховой линией невидимую часть очерковой линии сферы и конуса на фронтальной проекции между точками А2 и В2 и горизонтальную проекцию очерковой линии сферы и конуса между точками А1 и В1.

Точка экстремума на фронтальной проекции линии пересечения определяется с помощью способа сфер (точка D2 на рис. 5.5в).

Рассмотрим пример построения линии пересечения конуса и сферы способом секущих сфер.

1. Строим две проекции конуса и сферы по заданным ранее параметрам (рис. 5а) и определяем фронтальную проекцию О2 центра О секущих сфер-посредников.

2. Определяем фронтальные проекции опорных точек A2 и B2 – точек пересечения очерковых линий конуса со сферой и строим горизонтальные проекции этих точек – A1 и B1 (рис. 5б).

Помним, что линия пересечения поверхностей должна находиться в зоне наложения проекций конуса и сферы.

3. Определяем минимальный и максимальный радиусы сфер-посредников (рис. 5б). Для определения минимального радиуса Rmin сфер необходимо из центра сфер провести перпендикуляр О2К2 к образующей конуса О2К2 = Rmin. Максимальный радиус Rmax сферы равен расстоянию от центра О2 до наиболее удаленной точки В2 пересечения очерков поверхностей, т.е. Rmax= О2В2.

4. Строим промежуточные точки линии пересечения конуса и сферы (рис. 5в).

4.1. Строим фронтальную проекцию Г2 вспомогательной сферы Г минимального радиуса.

Рис. 4

  Для чего: – из центра O2 сфер строим фронтальную проекцию Г2 вспомогательной сферы Г, радиусом Rmin = O2K2, которая касается конической поверхности по окружности m, а заданную сферу пересекает по окружности n; 4.2. Строим точки D2 и (D2') пересечения окружностей m2 и n2. 4.3. Определяем горизонтальные проекции D1 и (D1') точек пересечения D и (D') окружностей. 4.4. Строим еще несколько вспомогательных сфер-посредников Г1…Г4, которые могут пересекать конус по двум окружностям, а сферу по одной окружности. 4.5. Строим проекции промежуточных точек линии пересечения поверхностей. 4.6. Соединяем полученные точки сплошной толстой линией с учетом её видимости в проекциях (рис. 5г).   Рис. 5 4.3. решение задачи 3 Рассмотрим пример построения развертки усеченной пирамиды (рис. 6) способом триангуляции. Развертка пирамиды состоит из боковой поверхности S123456, состоящей из шести треугольников S12,…S61, основания – правильного шестиугольника 123456 и плоскостей, полученных при сечении пирамиды секущими плоскостями. При построении развертки пирамиды будем придерживаться следующей последовательности: 1. Строим полную развертку боковой поверхности пирамиды по ребру S4 = b и стороне основания шестиугольника 34 = d измеренными на рис. 6.   Рис. 6   2. Переносим на развертку опорные точки ABCDEFG1 выреза, как точки, лежащие на ребрах пирамиды. Расстояние от вершины до соответствующей точки определяется на ребре S1 (рис. 6). Например, истинное расстояние от вершины S до точки D равно S2D0 (рис. 6). Откладываем отрезок S2D0 на образующей S0D0, построенной на развертке (рис. 7). Точки С и Е, лежащие на линии пересечения граней пирамиды с плоскостью Г, строим на развертке следующим образом: – проводим через фронтальные проекции С2 и Е2 точек С и Е проекции S2K2 и S2M2 линии посредники SK и SM (рис. 6); – достраиваем горизонтальные проекции S1K1 и S1M1 линий посредников SK и SM; – строим линии посредники S0K0 и S0M0. Для этого откладываем на развертке отрезки 21К1 и 31М1 от точек 20 и 30 соответственно (рис. 7); – проводим из точки D0 прямые линии параллельные линиям 2030 и 3040 до пересечения с линиями S0K0 и S0M0 в точках Е0 и С0. 3. Определяем развертки фигур, полученных в результате сечения пирамиды плоскостями. Натуральная величина фигуры ABCC1B1A, полученной от сечения профильной плоскостью Q равна замкнутому контуру A3B3C3C3'B3'A3. Симметричные точки со штрихами на рис. 6 не обозначены. Натуральная величина фигуры CDEE'D'C', полученной от сечения горизонтальной плоскостью Г равна замкнутому контуру C1D1E1E1'D1'C1' (рис. 6). Рис. 7  

Натуральная величина фигуры 1GFEE'F'G' сечения фронтально проецирующей плоскостью Т равна контуру 12G2F2E2E2'F2'G2', полученной способом замены плоскостей проекций (рис. 8).

Рис. 8

 

4. Строим развертку основания пирамиды и развертку фигур, полученных от сечения плоскостями Q, ГиТ (рис. 9).

 

Рис. 9

Полная развертка пирамиды приведена на рис. 1.

 




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 505; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.