Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несостоявшийся солдат и хилый книжный червь 2 страница




В самом деле? Кватернионы, быть может, развивались не вполне тем спором, какой предначертал Гамильтон, но их значимость растет с каждым годом. Они стали абсолютно фундаментальными для математики, и мы также увидим, что кватернионы и их обобщения играют фундаментальную роль и в физике. Одержимость Гамильтона открыла широкую дорогу современной алгебре и математической физике. Никогда еще квазиисторик столь отчаянно не ошибался.   Гамильтон, возможно, преувеличивал практическую роль кватернионов и выжимал из них фокусы, к которым они в действительности были малопригодны, но его вера в их важность начинает получать серьезные подтверждения. Кватернионы возымели странную привычку возникать в таких местах, где их появление менее всего ожидается. Одна из причин состоит в их единственности. Их можно охарактеризовать несколькими разумными и относительно простыми свойствами — некоторой выборкой из «законов арифметики», опустив всего один важный закон, — и они составляют единственную математическую систему, обладающую этим списком свойств. Это утверждение требует пояснений. Единственная числовая система, с которой знакома большая часть населения нашей планеты, — это вещественные числа. Их можно складывать, вычитать, умножать и делить, причем результат всегда будет вещественным числом. Разумеется, деление на нуль не допускается, но помимо этого необходимого ограничения можно применять весь набор арифметических операций, никогда при этом не покидая систему вещественных чисел. Математики называют такую систему полем. Имеется много других полей, таких как поле рациональных чисел и поле комплексных чисел, но поле вещественных чисел является специальным. Это единственное поле с еще двумя свойствами: оно упорядочено и полно. «Упорядочение» означает, что числа выстраиваются в соответствии с линейным порядком. Вещественные числа расположены вдоль прямой линии — отрицательные слева, а положительные справа. Имеются и другие упорядоченные поля, например поле рациональных чисел, но в отличие от других упорядоченных полей вещественное поле является также полным. Это дополнительное свойство (полная формулировка которого носит довольно технический характер) ответственно за существование таких чисел, как √2 и π . По сути свойство полноты говорит нам, что бесконечные десятичные дроби имеют смысл. Можно доказать, что вещественные числа составляют единственное полное упорядоченное поле. Этим и определяется их центральная роль в математике. Они дают единственный контекст, в котором можно выполнять арифметические операции, сравнение «больше чем», а также основные операции анализа. Комплексные числа представляют собой расширение вещественных за счет включения чисел нового типа — квадратного корня из минус единицы. Но цена за возможность извлекать квадратные корни из отрицательных чисел состоит в потере упорядочения. Комплексные числа являются полной системой, но они заселяют плоскость, а не выстраиваются в единую упорядоченную последовательность. Плоскость двумерна, а 2 — конечное целое число. Комплексные числа — это единственное поле, которое содержит вещественные числа и имеет конечную размерность (и которое при этом отлично от самих вещественных чисел, имеющих размерность единица). Это говорит о том, что и комплексные числа тоже единственны. Для многих важных целей комплексные числа оказываются единственным средством, которое позволяет добиться желаемого. Их единственность делает их незаменимыми. Кватернионы возникают при попытке расширить комплексные числа за счет увеличения размерности (оставляя ее, тем не менее, конечной) с сохранением при этом максимально возможного числа законов алгебры. Законы, которые мы хотим оставить, — это обычные свойства сложения и вычитания, большая часть свойств умножения и возможность деления на все, кроме нуля. На этот раз жертву приходится приносить более серьезную; это-то и доставило Гамильтону столько терзаний. Надо выкинуть закон коммутативности умножения. Этот брутальный факт надо просто принять — и двигаться дальше. Когда вы к нему привыкнете, вы зададитесь вопросом, а почему вообще вы ожидали, что закон коммутативности будет выполнен во всех случаях, а одновременно начнете воспринимать тот факт, что он выполнен для комплексных чисел, как небольшое чудо. Любая система с таким набором свойств, неважно, коммутативная или нет, называется алгеброй с делением. Вещественные числа и комплексные числа — тоже алгебры с делением, потому что мы не настаиваем на отказе от коммутативности умножения, мы просто не требуем выполнения этого свойства. Каждое поле является алгеброй с делением. Но некоторые алгебры с делением не являются полями, и первыми из таких объектов были открыты кватернионы. В 1898 году Адольф Гурвиц доказал, что система кватернионов также единственна. Кватернионы являются единственной конечномерной алгеброй с делением, которая содержит вещественные числа и не совпадает с вещественными или комплексными числами. Здесь просматривается любопытная закономерность. Размерности вещественных чисел, комплексных чисел и кватернионов равны 1, 2 и 4. Это подозрительно похоже на начало последовательности степеней двойки. Естественным продолжением были бы 8, 16, 32 и т.д. Имеются ли интересные алгебраические системы в этих размерностях? И да и нет. Но нам придется немного подождать, чтобы узнать почему, поскольку история симметрии вступает здесь в новую фазу: связь с дифференциальными уравнениями, представляющими собой наиболее широко используемую модель физического мира, и язык, на котором сформулировано большинство физических законов природы. И снова наиболее глубокие аспекты теории сводятся к симметрии, правда, с новым поворотом сюжета. Теперь группы симметрии будут не конечными, а «непрерывными». Математике предстояло обогатиться одной из наиболее влиятельных программ исследований из всех когда-либо предпринятых.   Глава 10



Пьяный вандал

 

Уильям Роуэн Гамильтон[36]был величайшим математиком из всех, когда-либо рожденных Ирландией. Он появился на свет, когда часы отбивали полночь с 3 на 4 августа 1805 года, и впоследствии так и не смог окончательно решить, какой же из дней считать днем своего рождения. По большей части он склонялся к 3-му, но на его надгробии указана дата «4 августа», потому что ближе к концу жизни он перешел на эту дату по сентиментальным причинам. Он был блестящим лингвистом, математическим гением и алкоголиком. Он задался целью изобрести алгебру в размерности три, но вместо этого во вспышке озарения, которое вылилось в акт вандализма по отношению к мосту, реализовал то, к чему стремился, в размерности четыре. Он навсегда изменил взгляды человечества на алгебру, пространство и время.

Уильям родился в богатой семье — он был третьим сыном Арчибальда Гамильтона, юриста, голова которого была устроена подходящим для бизнеса образом. У Уильяма была также сестра по имени Элиза. Отец любил пропустить пару-тройку стаканчиков, поэтому некоторое время с ним приятно было находиться в одной компании, однако ближе к вечеру дело поворачивалось обратной стороной медали. Арчибальд ясно выражал свои мысли, был умен и религиозен, и его младший сын унаследовал все его отличительные черты, включая пристрастие к алкоголю. Мать Уильяма Сара Хаттон в умственном отношении не уступала мужу — она происходила из семьи, несшей на себе знаки интеллектуального отличия, однако ее влияние на маленького Уильяма ограничилось по большей части передачей ему своих генов — в трехлетнем возрасте мальчик был отдан в обучение к дяде Джеймсу. Джеймс был викарием и превосходным лингвистом, и его интересы определили основные направления образования Уильяма.

Результаты последовали впечатляющие, хотя и на довольно узком поприще. В пятилетнем возрасте Уильям свободно владел греческим, латынью и древнееврейским. К восьми годам он говорил по-французски и по-итальянски. Два года спустя к списку добавились арабский и санскрит; позднее — персидский, сирийский, хинди, малайский, маратхи и бенгальский. Попытка овладеть китайским провалилась из-за отсутствия подходящих текстов. Джеймс жаловался, что ему «стоило немалых денег поддерживать его из Лондона, но, похоже, деньги были потрачены не зря». Математик и квазиисторик Эрик Темпл Белл («квази», потому что он никогда не позволял неудобному факту испортить хорошую историю) вопрошал: «Для чего все это было нужно?»

Однако естественным наукам и математике повезло. Уильям, совсем уже было собравшийся посвятить свою жизнь изучению как можно большего числа существующих в мире языков, познакомился с американским вундеркиндом по имени Зира Колберн. Это был один из тех странных людей, чья голова работает как карманный калькулятор; он обладал способностью быстро и точно выполнять вычисления. Если бы вы спросили Колберна, чему равен кубический корень из 1 860 867, он ответил бы — 123, не моргнув глазом.

Такие способности — не то же самое, что склонность к математике, подобно тому как способность к грамотному письму не сделает из вас хорошего романиста. За исключением Гаусса, в записных книжках и рукописях которого остались многочисленные объемные вычисления, очень мало кто из великих математиков был выдающимся вычислителем. Большинство были просто толковыми вычислителями, каковыми в то время и требовалось быть, но в среднем не более выдающимися, чем обычный квалифицированный бухгалтер. Даже в наши дни компьютеры не полностью вытеснили вычисления ручкой на бумаге или в уме; часто можно получить хорошее представление о математической задаче, делая вычисления руками и следя за тем, как на бумаге выстраиваются символы. Но, разумеется, при наличии хорошей программы (по большей части созданной математиками) кто угодно сможет после часа тренировки проводить вычисления на уровне, которому возможности Колберна и в подметки не годятся.

И не думайте, что нечто подобное сделает вас хоть сколько-нибудь похожим на Гаусса.

Колберн не мог толком объяснить, какие приемы он использует, хотя и понимал, что немалую роль здесь играет память. Его познакомили с Гамильтоном в надежде, что юный гений прольет свет на эти таинственные приемы. Уильям так и сделал и даже предложил некоторые усовершенствования. Ко времени отъезда Колберна Гамильтон наконец нашел предмет достойный потрясающей мощи своего ума.

К семнадцати годам Гамильтон прочитал целый ряд трудов, написанных корифеями математики, и знал достаточно математической астрономии, чтобы вычислять затмения. Он по-прежнему проводил больше времени за «классическими» штудиями, чем за математикой, но все же именно математика стала его настоящей страстью. Вскоре он начал делать первые открытия. Гаусс открыл построение правильного 17-угольника, когда ему было 19 лет, а молодой Гамильтон совершил равно беспрецедентный прорыв, сформулировав аналогию — выражаясь математически, тождество — между механикой и оптикой, наукой о свете. Он впервые упомянул о своих идеях по этому поводу в зашифрованном письме к сестре Элизе, но нам вполне достоверно известно о характере этих идей из его последующего письма кузену Артуру.

Это было удивительное открытие. Механика — наука о движущихся телах: пушечные ядра летят по дуге параболы, маятники регулярным образом раскачиваются из стороны в сторону, планеты движутся по эллипсам вокруг Солнца. Оптика же представляет собой геометрию световых лучей, отражение и преломление, радуги, призмы и телескопические линзы. Связь между ними оказалась неожиданной; в то, что они представляют собой одно и то же, поверить было невозможно.

Но тем не менее так оно и было. И это непосредственно привело к формализму, который в наши дни используется в математике и математической физике (не только в механике и оптике, но и в квантовой теории), — так называемому формализму гамильтоновых систем. Их основное свойство состоит в том, что уравнения движения механической системы выводятся из единой величины — полной энергии, ныне называемой гамильтонианом системы. Получающиеся уравнения оперируют не только с положениями различных частей системы, но и с тем, сколь быстро они движутся, — с импульсом системы. И еще одно прекрасное свойство этих уравнений состоит в том, что они не зависят от выбора координат. Красота является истиной, по крайней мере в математике. А здесь физика одновременно и прекрасна, и истинна.

 

Гамильтону повезло больше, чем Абелю или Галуа, в том отношении, что на его необычные способности обратили внимание в раннем детстве. Поэтому вполне естественно, что в 1823 году он поступил в ведущий ирландский университет — дублинский Тринити Колледж. Равным образом неудивительно, что он шел первым в списке из сотни кандидатов. Во время учебы в Тринити он получил все возможные награды. И, что еще важнее, он закончил первый том своего основополагающего труда по оптике.

Весной 1825 года Гамильтон открыл для себя притяжение прекрасного пола, представшего перед ним в лице Кэтрин Дизни. Наверное, он поступил не слишком мудро, ограничив свои знаки внимания написанием стихов, потому что его потенциальная возлюбленная недолго думая вышла замуж за священника старше ее на пятнадцать лет, который был способен на несколько менее литературный подход к порядочным девицам. Сердце Гамильтона было разбито; несмотря на свою твердую приверженность религиозным заповедям, он подумывал о том, чтобы утопиться, то есть совершить смертный грех. Однако здравомыслие одержало верх, и он излил свою разочарованную душу еще в одной поэме.

Гамильтон любил поэзию, и круг его друзей включал самых видных литераторов. Уильям Вордсворт стал его близким другом; он также часто встречался с Сэмюелем Тейлором Колриджем и другими писателями и поэтами. Вордсворт оказал Гамильтону ценнейшую услугу, деликатно намекнув ему, что его таланты лежат не в сфере поэзии:

 

Вы засыпали меня градом ваших стихов, которые я прочитал с великим удовольствием… Однако же нас не оставляет опасение, что подобная стезя может отвратить вас от научного пути… Я не решаюсь вам советовать, но не найдет ли поэтическая часть вашей натуры более благодарного для себя поля в области прозы…

 

Гамильтон ответил в том смысле, что его истинной поэзией была математика, и мудро переключился на научное поприще. в 1827 году, еще в бытность его студентом, Гамильтона единогласно избрали профессором астрономии в Тринити после того, как занимавший эту должность Джон Бринкли подал в отставку, а точнее, стал епископом Клойна. Гамильтон начал сразу с громкого успеха, опубликовав свою книгу по оптике — предмету, важному для астрономии, поскольку оптика лежит в основании устройства большинства астрономических инструментов.

Связь с механикой там присутствовала лишь в зачаточной форме. Основной фокус книги, если можно так выразиться, заключался в геометрии световых лучей — как они изменяют направление при отражении в зеркале или как преломляются в линзе. «Геометрическая оптика» позднее уступила место «волновой оптике», в которой свет рассматривается как волны. Волны обладают целым набором дополнительных свойств, самое заметное из которых — дифракция. Интерференция волн может приводить к размытию краев изображения и даже к эффекту, который выглядит как огибание светом угла (фокус, невозможный для лучей).

Геометрия световых лучей не была новым предметом; ее интенсивно изучали математики и до этого, начиная с Ферма и даже с греческого философа Аристотеля. Гамильтон сделал в оптике нечто подобное прославленному достижению Лежандра в механике: он избавился от геометрии и заменил ее алгеброй и анализом. А именно — заменил основанные на рисунках чисто геометрические рассуждения на абстрактные вычисления.

Это было существенным шагом вперед, поскольку неточные картинки, тем самым, заменялись строгим анализом. Позднее математики предприняли энергичные усилия, чтобы пройти путь, намеченный Гамильтоном, в обратном направлении и снова ввести в обиход наглядные образы. Но формальный алгебраический подход стал к тому моменту неотъемлемой частью математического мышления и мог оставаться естественным спутником более наглядных аргументов. Колесо моды сделало полный оборот, но на более высоком уровне, подобно спиральной лестнице.

Великим вкладом Гамильтона в оптику было объединение. Все огромное многообразие известных результатов он свел к одному фундаментальному методу. Вместо системы световых лучей он ввел одну-единственную величину, «характеристическую функцию» системы. С ее помощью любая оптическая конфигурация представлялась одним уравнением. Более того, это уравнение можно было решить единообразным способом, что давало полное описание всей системы лучей и ее поведения. Метод Гамильтона основывался на одном фундаментальном принципе: световые лучи, проходящие через любую систему зеркал, призм и линз, выбирают путь, распространение по которому до цели занимает наименьшее время.

 

Ферма еще ранее обнаружил некоторые специальные случаи этого принципа, назвав его принципом наименьшего времени. Простейший пример, позволяющий объяснить его работу, — это отражение света от плоского зеркала. Левый рисунок показывает, как световой луч, выходя из одной точки и отражаясь от зеркала, достигает второй точки. Одним из великих открытии на заре оптики был закон отражения, который гласит, что две части светового луча составляют с зеркалом равные углы[37].

 

 

Как принцип наименьшего времени приводит к закону отражения.

 

Ферма придумал изящный прием: отразить в зеркале второй участок луча, а заодно и вторую точку, как показано на правом рисунке. Благодаря Эвклиду условие «равных углов» — это то же самое, что утверждение, что в этой «отраженной» картине путь от первой точки до второй является прямой линией. Но Эвклид доказал тот знаменитый факт, что прямая линия есть кратчайшее расстояние между двумя точками. Поскольку скорость света в воздухе постоянна, кратчайшее расстояние означает то же самое, что наименьшее время.

Возвращаясь к геометрии на левом рисунке, мы видим, что выполнено то же самое утверждение. Таким образом, условие равных углов логически эквивалентно тому факту, что световой луч выбирает путь с наименьшим временем распространения из первой точки во вторую при условии, что по дороге надо отразиться от зеркала.

Связанный с этим принцип — закон преломления Снеллиуса — говорит о том, как «ломается» луч при переходе из воздуха в воду и вообще из одной среды в другую. Этот закон можно вывести подобным же образом, если учесть, что свет распространяется в воде медленнее, чем в воздухе. Гамильтон пошел еще дальше, утверждая, что тот же принцип минимизации времени применим ко всем оптическим системам, и воплотив эту мысль в едином математическом объекте — характеристической функции.

Использованная здесь математика впечатляла, но в руках Гамильтона она привела к немедленной экспериментальной отдаче. Гамильтон заметил, что из его метода следовало существование «конического преломления», когда один луч света при попадании на подходящий кристалл выходит из него в виде целого конуса лучей. В 1832 году это предсказание, неожиданное для всех кто работал в оптике, получило прочное экспериментальное подтверждение, когда Хэмфри Ллойд использовал кристалл арагонита. На следующее утро Гамильтон проснулся знаменитым.

К 1830 году Гамильтон озаботился тем, чтобы обзавестись семьей; он подумывал жениться на Элен де Вер, умом которой как он говорил Вордсворту, он восхищался. Ей он тоже писал письма в стихах и был готов уже сделать предложение, когда она заявила ему, что никогда не уедет из своей родной деревни Карра[38]. Он воспринял это как тактичный отказ — весьма вероятно, что обоснованно, поскольку через год она вышла за кого-то замуж и все же уехала.

В конце концов он женился на Элен Бейли — местной девушке, жившей неподалеку от обсерватории. Гамильтон описывал ее как «далеко не блестящую». Медовый месяц был ужасен: Гамильтон занимался оптикой, а Элен болела. В 1834 году у них родился сын Уильям Эдвин. Затем Элен уехала на большую часть года. Второй сын Арчибальд Хенри появился на свет в 1835-м, но брак уже трещал по швам.

 

В глазах потомства величайшим открытием Гамильтона была сформулированная им оптико-механическая аналогия. Но сам он до самой смерти — причем с все возрастающим упорством — отдавал пальму первенства вещи совершенного другого сорта — кватернионам.

Кватернионы представляют собой некоторую алгебраическую структуру, находящуюся в близком родстве с комплексными числами. Гамильтон был убежден, что они содержат в себе ключ к глубочайшим областям физики, а на склоне жизни убедил себя, что в них содержится ключ буквально ко всему. История, похоже, не согласилась с этой оценкой, и в течение следующего столетия кватернионы медленно тускнели, пропадая из поля общественного интереса, превратившись в тихую заводь абстрактной алгебры без серьезных применений.

Совсем недавно, однако, кватернионы пережили возрождение. И даже если они никогда не займут того положения, которое прочил им Гамильтон, их чем дальше, тем больше рассматривают как значимый источник важных математических структур. Кватернионы оказались очень специальным явлением — как раз настолько специальным, насколько этого требуют современные физические теории.

Сразу после открытия кватернионы произвели мощный переворот в алгебре. Они нарушили одно из важных алгебраических правил. На протяжении периода в двадцать лет чуть ли не все правила алгебры нарушались одно за другим, что иногда приносило богатейшие плоды, но ничуть не реже приводило в бесплодные тупики. То, что математики середины 1850-х годов воспринимали как не подлежащие изменениям правила, оказалось просто набором удобных допущений, облегчавших жизнь алгебраистам, но не всегда отвечавших более глубоким потребностям самой математики.

В этом прекрасном новом «постгалуавском» мире алгебра уже не сводилась к простому использованию в уравнениях букв вместо чисел. Алгебра имела дело с глубокой структурой уравнений — не с числами, а с процессами, преобразованиями, симметриями. Эти радикальные перемены изменили лицо математики. Она стала более абстрактной, но одновременно и более общей, и более мощной. А также приобрела зачаровывающую, порой сверхъестественную красоту.

До того как болонские математики эпохи Возрождения задались вопросом о том, имеется ли смысл в квадратном корне из минус единицы, все появляющиеся в математике числа принадлежали одной системе. Даже сегодня, в качестве наследия исторической путаницы во взаимоотношениях математики и реальности, эта система известна как вещественные числа. Название не слишком удачное, потому что оно предполагает, что эти числа некоторым образом принадлежат к ткани вселенной, а не порождены человеком в попытке понять ее структуру. Но это не так. Эти числа не более вещественны, чем любые другие «числовые системы», созданные человеческим воображением за последние 150 лет. Правда, они имеют более непосредственное отношение к реальности, чем большинство новых систем. Они очень точно соответствуют идеализированному измерению.

Вещественное число по сути представляет собой десятичную дробь. Дело не в конкретной выбранной системе записи — которая создана просто для удобства вычислений с числами, — а в тех более глубоких свойствах, которые присущи десятичным дробям. Вещественные числа произошли от предшественников попроще, с меньшими амбициями. Сначала человечество тащилось по направлению к системе «натуральных чисел» 0, 1, 2, 3, 4 и так далее. Я сказал «тащилось», потому что на начальном этапе некоторые из этих чисел числами вовсе не считались. Было время, когда древние греки отказывались считать 2 числом; оно было слишком маленьким, чтобы демонстрировать «численность», типичную для других чисел. Числа тогда начинались с 3. В конце концов было осознано, что 2 — число в той же мере, что и 3, 4 или 5, но затем камнем преткновения оказалась единица. В самом деле, если кто-то говорит про себя, что у него имеется «некоторое число коров», а вы обнаруживаете, что у него одна-единственная корова, то не будет ли он повинен в вопиющем преувеличении? «Число», без сомнения, означало «множественность», в которой нет места единичности.

Но по мере развития систем обозначений стало кристально ясно, что единица — ровно в той же мере часть системы вычислений, что и ее старшие братья. Таким образом, единица стала числом — правда, специальным, очень маленьким. В некотором смысле оно оказалось самым важным из всех, поскольку именно там, в единице, числа начинались. Прибавлением друг к другу большого числа единиц можно получить все остальное — и в течение некоторого времени обозначения буквально выражали эту идею, например, число семь записывалось в виде семи черточек — как

 

Мариус Софус Ли занялся наукой только потому, что из-за плохого зрения был не годен ни к одной из военных профессий. Когда в 1865 году Софус (имя, под которым он обрел известность) закончил университет Христиании, он имел в своем багаже несколько математических курсов, включая и курс по теории Галуа, читавшийся норвежским математиком Людвигом Силовом, однако Софус не выказывал каких-либо особых способностей в этом предмете. В течение некоторого времени он колебался, осознавая свое стремление к академической карьере, но колеблясь, к какой из областей науки себя применить — к ботанике, зоологии, или, быть может, астрономии.

Записи в университетской библиотеке показывают, что он начал брать все больше и больше книг по математике. А в 1867 году посреди ночи его посетило видение дела всей его жизни. Друг Софуса Эрнст Мотцфелд был немало удивлен, когда посреди ночи его разбудил возбужденный Ли, кричавший: «Я понял! Это совсем просто!» А понял он, как по-новому смотреть на геометрию.

Ли взялся за изучение работ великих геометров, таких как немец Юлиус Плюккер и француз Жан-Виктор Понселе. От Плюккера он перенял идею геометрий, основанных не на хорошо всем знакомых точках, как у Эвклида, а на других объектах — линиях, плоскостях, окружностях. В 1869 году он на собственные средства опубликовал статью, кратко излагающую его основную идею. Подобно своим предшественникам Галуа и Абелю, он обнаружил, что его идеи слишком революционны для старой гвардии, так что обычные журналы не желали публиковать его исследования. Но Эрнст отказал своему другу в праве на уныние и поощрял его продолжать работы по геометрии. В конце концов одна из статей Ли была опубликована в престижном журнале и получила благосклонный прием.

Это принесло Ли стипендию. Теперь у него были деньги, чтобы путешествовать, посещать ведущих математиков и обсуждать с ними свои идеи. Он отправился туда, где взращивался весь цвет прусской и немецкой математики, — в Геттинген и Берлин, где беседовал с алгебраистами Леопольдом Кронеккером и Эрнстом Куммером и аналитиком Карлом Вейерштрассом. На него произвел большое впечатление подход Куммера к математике и несколько меньшее — подход Вейерштрасса.

Наиболее важная встреча, однако, состоялась в Берлине — с Феликсом Клейном, который, так случилось, учился ранее у Плюккера, которым Ли глубоко восхищался и которому стремился подражать. У Ли и Клейна было очень схожее математическое образование, но совершенно разные вкусы. Клейн, по существу, алгебраист с геометрическим уклоном, обожал работать над специальными проблемами, обладающими внутренней красотой; Ли же был аналитиком, которому импонировал широкий охват общих теорий. По иронии судьбы именно общие теории Ли дали математике некоторые из наиболее важных специальных структур, которые и были, и до сих пор остался изумительно красивыми, необычайно глубокими и по большей части алгебраическими. Открытие этих структур могло бы вообще не состояться, если бы не стремление Ли к общности. Если вы пытаетесь понять все возможные математические объекты некоторого типа и если вам это удалось, то вы неизбежно найдете среди них много объектов с необычными свойствами.

В 1870 году Ли и Клейн снова встретились в Париже. Именно там Жордан обратил Ли в дело теории групп. В то время росло осознание, что геометрия и теория групп выражают две стороны одной медали, но законченное оформление этих мыслей требовало времени. Ли и Клейн написали несколько совместных работ, пытаясь сделать связь между группами и геометрией более явной. В конце концов мысли Клейна кристаллизовались в его «эрлангенской программе» 1872 года, согласно которой геометрия и теория групп тождественны друг другу.

На современном языке эта идея звучит столь просто, что, казалось бы, она должна была всегда представляться совершенно очевидной. Группа, отвечающая любой заданной геометрии, — это группа симметрий данной геометрии. Наоборот, геометрия, соответствующая какой-либо группе, доставляется любым объектом, группой симметрии которого является данная группа. Другими словами, геометрия определяется тем, что остается инвариантным под действием группы.

Например, симметрии эвклидовой геометрии — это те преобразования плоскости, которые сохраняют длины, углы, линии и окружности. Они составляют группу всех движений плоскости без деформаций. Наоборот, что-нибудь, инвариантное относительно таких движений, естественно попадает в сферу действия эвклидовой геометрии. Неэвклидовы геометрии просто используют иные группы преобразований.

Зачем же тогда трудиться, чтобы конвертировать геометрию в теорию групп? Дело в том, что это дает два разных способа думать о геометрии, а также два разных способа думать о группах. Иногда вещи легче понять одним способом, иногда другим. Две точки зрения лучше одной.

 

Отношения между Францией и Пруссией быстро ухудшались. Император Наполеон III рассчитывал поддержать свою падающую популярность, начав войну с Пруссией. Бисмарк отправил французам телеграмму провокационного содержания, и 19 июля 1870 года была объявлена Франко-Прусская война. Клейн — пруссак в Париже — счел за лучшее вернуться в Берлин.





Дата добавления: 2017-01-14; Просмотров: 6; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.166.231.176
Генерация страницы за: 0.168 сек.