Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Эмбриональная стволовая клетка, клонирование и клеточная терапия




Только в 1981 году американскому ученому Мартину Эвансу впервые удалось выделить животную стволовую эмбриональную клетку из зародыша мыши. Все последующие годы усилия ученых были направлены на получение эмбриональной стволовой клетки из человеческого зародыша. И в 1998 году удача улыбнулась американским исследователям Джеймсу Томпсону и Джону Беккеру. Сейчас каждый из них имеет в своей лаборатории до 10 бессмертных саморазмножающихся клеточных линий человеческих эмбриональных стволовых клеток.

Впервые во внутриутробном развитии человека эмбриональные стволовые клетки появляются на 5-7-й день после оплодотворения. Они образуют комочек внутри бластоциста - шарика, состоящего из 140 клеток.

В нашей стране одним из признанных лидеров исследований в области эмбриональных стволовых клеток является профессор В. Репин. Данная статья представляет собой запись его доклада, сделанного в мае этого года на заседании президиума Российской академии медицинских наук.

Самое главное свойство эмбриональной стволовой клетки состоит в том, что генетическая информация, заключенная в ее ядре, находится как бы в "нулевой точке" отсчета. Дело в том, что все неполовые клетки живых организмов (соматические клетки) специализированы, то есть выполняют какие-либо функции: клетки костной ткани формируют скелет, клетки крови отвечают за иммунитет и разносят кислород, нервные клетки проводят электрический импульс и так далее. А эмбриональная стволовая клетка еще не "включила" механизмы, определяющие ее специализацию. В "нулевой точке" ее геном еще не "запустил" ни одной программы и, что особенно важно, не начал выполнять программу размножения и формирования многоклеточного зародыша. Таких "нулевых" клеток в зародыше очень мало - всего сотые доли процента, вот почему исследователям так трудно было получить их в "чистом виде".

Эмбриональные стволовые клетки не работают в автоматическом режиме, как, например, тромбоциты или лимфоциты, они могут принять любую программу и превратиться в один из 150 возможных типов зародышевых клеток. Эмбриональная клетка лишь ждет специального "сигнала", чтобы начать одно из своих превращений. Это означает, что она не имеет никаких функций, кроме переноса мРНК в следующее клеточное поколение. Все клетки имеют, а она - нет. Эмбриональная клетка - кассета с информацией, клетка-аноним, клетка "без имени-отчества".

Еще один важный момент. Из эмбриональных стволовых клеток формируются островки в различных органах и тканях. По сути, наши органы являются смесью взрослых специализированных клеток с вкраплениями зародышевой ткани в виде эмбриональных стволовых клеток. Эти клетки растут, рождаются и умирают. И лишь их "праматерь" бессмертна. Сейчас уже научились выделять из головного мозга зародышей не просто отдельные эмбриональные стволовые клетки, а зародышевую ткань, из которой, как из куска глины, природа "лепит" все живое. При хранении зародыша в холодильнике при +4оС через 4-5 часов все клетки погибают, остаются лишь эмбриональные стволовые клетки-предшественники.

Эмбриональная стволовая клетка расскажет ученым о том, как "работают" гены

Томпсон и Беккер сделали для биологической науки ХХI века то же самое, что Уотсон и Крик для молекулярной биологии ХХ века. Уотсон и Крик нашли научный плацдарм для работы в области генетики, а Томпсон и Беккер - в области функциональной геномики. И действительно, их авторитет и количество публикаций по изучению эмбриональной стволовой клетки растут лавинообразно, несмотря на то, что они опубликовали всего лишь по одной работе в международных научных журналах "Science" и "Proceedings of National Academy of Sciences USA" (Труды американской национальной Академии наук) в 1998 году, а уже в 1999 году журнал "Science" признал выделение эмбриональных стволовых клеток человека третьим по важности событием в биологии ХХ века.

С открытием в 1953 году Уотсоном и Криком двойной спирали ДНК ученые поняли, где в живой клетке хранится и как передается наследственная информация. Уотсон и Крик помогли понять, как законы наследственности "работают" в масштабе одной клетки. В 2001 году ученые полностью расшифровали молекулярную структуру ДНК человека, но не поняли, как "работают" составляющие ее гены. И вот эмбриональная стволовая клетка оказалась прекрасной моделью для понимания того, как 5000 генов эмбриогенеза тиражируют генетическую информацию, чтобы из одной клетки вырос человеческий организм, состоящий из 1014 клеток.

Вся "работа" генома контролируется определенным набором генов, которые сначала формируют "костяк" клетки, потом ее внутреннюю структуру (органеллы) и, наконец, целиком клетку с полным набором генов. Говоря языком компьютерщиков, устройство клетки - это hardware - аппаратное обеспечение компьютера. И в последний момент в клетку "встраивается" software - генетическая программа, определяющая ее специализацию, ее место в организме. Проще говоря, это инструкция к тому, будет ли данная клетка, к примеру, частью соединительной ткани или она станет элементом крови.

Схема получения "запчастей" из эмбриональных стволовых клеток. После оплодотворения яйцеклетка начинает делиться и дает сначала 2, потом 4, а затем и 140 клеток, образующих шарик-бластоцист. Его наружную оболочку разрушают вручную (микроманипулятором) или ферментами, получая стволовые клетки. Содержа в культуре, их можно размножать и вызывать превращение в специализированные клетки организма - нервные, мышечные, печеночные, кожные и т. д., которые затем пересаживают больному взамен таких же отмерших или заболевших его собственных клеток.

Итак, все клетки одного организма имеют одинаковый набор генов, но у каждого из нас есть по меньшей мере 350 типов клеток, "работающих" по различным генетическим программам.

Перед одной-единственной клеткой стоит задача превратиться в организм, состоящий из миллиардов клеток. Для этого в ней имеются 5000 так называемых генов эмбриогенеза, регулирующих этот процесс на начальной стадии развития зародыша. Сначала оплодотворенная яйцеклетка размножается, превращаясь в клетки, которым не суждено стать зачатками будущих органов или тканей, они просто переносчики генетической информации в виде молекул РНК.

И только когда накопится уже достаточное количество информации, в работу включаются гены, ответственные за специализацию, после чего начинают формироваться семейства различных стволовых клеток и происходит сегментация зародыша (структурно выделяются участки будущих органов). Причем количество клеток в том или ином сегменте (будущем органе) генетически запрограммировано, а значит - конечно. Поэтому ученым при выращивании семейства эмбриональных стволовых клеток чрезвычайно важно брать клетку-"праматерь" на стадии, когда еще "молчат" гены сегментации. Томпсону и Беккеру это удалось, и потому они на сегодняшний день имеют практически неограниченное количество бессмертных эмбриональных стволовых клеток.

Удивительная способность эмбриональной стволовой клетки стать любой клеткой организма продиктована наличием в ней избытка РНК всех генов, отвечающих за рост зародыша на ранней стадии развития эмбриона. Факторы, делающие эмбриональную клетку уникальной, находятся в ее клеточной жидкости - цитоплазме. Именно поэтому возможно клонирование живых существ. Можно "вынуть" ядро с генетическим материалом из клетки любого организма, "вставить" его в оболочку яйцеклетки, и система начнет "работать" - копировать содержащуюся в ДНК информацию, а затем формировать новое живое существо, идентичное донору.

Изучение путей превращения эмбриональной стволовой клетки особенно важно для медицины, ведь, зная их, можно вырастить из клеток-предшественников огромный массив ткани и, в принципе, любой человеческий орган. Но для того, чтобы клонировать орган, одних эмбриональных стволовых клеток недостаточно. Нужны еще специальные стволовые клетки, из которых выращивается межклеточное вещество, формируется кровеносная система. Работы по выращиванию органов уже ведутся. Ведь стоит только направить эмбриональные клетки по "нужному пути" - и успех обеспечен. Во многих случаях ученые уже знают, как это сделать.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 963; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.