Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ориентация кристалла




В процессе роста монокристаллов наблюдается несоответствие оси слитка кристаллографической оси. Для получения пластин, ориентированных в заданной плоскости, до резки производят ориентацию слитков.

Для контроля угла среза кристалла применяют рентгенографический метод. Данный метод основан на дифракции рентгеновских лучей в кристалле вещества. Рентгеновские лучи при прохождении через кристалл взаимодействуют с электронными оболочками атомов. В результате этого взаимодействия происходит дифракция рентгеновких лучей и на фотопленке получается дифракционная картина – пятна или окружности. Из дифракционной картины получают сведения о размещении молекул, о расстояниях между атомами и углах между химическими связями.

Положение плоскости среза определяется на рентгенгониометре (рис. 4.4) по отношению к атомной плоскости, ориентация которой известна. Для измерения угла среза выбирается ближайшая к нему атомная плоскость, обладающая интенсивностью отражения не меньше 0,5% интенсивности минимально отражающей поверхности. Выбранная атомная плоскость должна составлять угол δ с плоскостью среза, несколько меньше угла θ Брегга.

Рентгеновские лучи с длиной волны λ =0,15405 нм от рентгеновской трубки 1 с медным анодом проходят через бериллиевое окно 2, коллиматор 3, представляющий собой металлическую трубу с вертикальной и горизонтальной щелями на концах, селективный никелевый фильтр 4 к пластине 5, закрепленной в приставке 6, угол поворота которой фиксируется на дисковой шкале 7. Если пластину с параллельными гранями и атомными плоскостями (hk.l) установить так, чтобы угол А был равен углу Брэгга , то рентгеновские лучи отразятся от него под углом Брэгга через горизонтальную 8 и вертикальную 9 щели, достигнут детектора рентгеновского излучения 10, установленного под углом 2 и фиксируются счетчиком 11 и регистратором максимальной интенсивности отражения 12 [21].

Рис. 4.4. Схема рентгенгониометра

Если же атомная плоскость не параллельна грани, а находится под δ углом, то прибор покажет максимум отражения при повороте контрольной пластины на угол . Погрешности определения углов ориентации составляют ±30’’.

Кристаллографические плоскости характеризуются определенными углами отражения падающих на них рентгеновских лучей. Величины этих углов, например, для кремния: (111) –17°56', (110) - 30° 12', (100) – 44°23'

 

Для ориентации рентгеновским способом используют установки УРС-50И, УРС-60, УРС-70К1. Универсальная установка УРС-50И с приставкой ЖК 78.04 предназначена для определения ориентации в кристалло графической плоскости (111). Максимальный угол отклонения кристаллографической плоскости (111) от торца слитка Si, который можно определить на данной установке, составляет 14°, а для слит ков Ge — 13°.

Рис. 4.5. Общий вид рентгеновской установки для ориентирования монокристаллов УРС-50И(М)

 

 

Общий вид рентгеновской установки для ориентирования монокристаллов с приставкой показан на рис. 4.5. Аппарат состоит из стола 2, гониометрического устройства 5 (ГУР-3, а для модификации УРС-50ИМ – ГУР-4), рентгеновской трубки – источника рентгеновских лучей 7, счетчика квантов 4, распределительного блока 1, блока усиления импульсов 3, защитного экрана 6. Установка подключается к сети через входной стабилизатор типа СН-1. Анод рентгеновской трубки защищен массивным металлическим кожухом и охлаждается водой. Все части установки, кроме измерительного шкафа 1, который выполнен отдельно, расположены на столе 2. Внутри стола размещены пускорегулирующая аппаратура и высоковольтное генераторное устройство, питающее рентгеновскую трубку [25].

 

Процесс ориентации кристалла:

1. Установить кристалл в станке АОС-200М и зафиксировать крепежными винтами.

2. Отрезать пробную пластину толщиной 1-1,5 алмазным кругом.

3. Установить пробную пластину на приставку рентгенгониометра УРС-50ИМ.

4. Определить с помощью рентгенгониометра угол среза кристалла по максимуму отражения при повороте контрольной пластины. Приборная погрешность определения углов ориентации составляет ±30’’. Для надежной работы необходимо два раза в год проводить профилактический осмотр приставки и смазку трущихся деталей. Редуктор смазывают машинным маслом, которое заливают через крышку. Особое внимание следует обращать на состояние рабочей поверхности угольника, так как от длительной эксплуатации поверхность угольника, к которой прижимают ориентируемые пластины, со временем теряет первоначальную чистоту обработки, изнашивается. От точности изготовления угольника зависит точность ориентации, поэтому при профилактическом осмотре необходимо осматривать угольник и контролировать его базовые размеры. При отклонении размеров и чистоты поверхности от заданных угольник необходимо отремонтировать или заменить новым.

5. Вычисление поправок углов среза по шкале рентгенгониометра с точностью до 1 - 2 мин. путем малых подвижек стола и нанесение данных на заготовку.

6. Осуществить подшлифовку поверхности кристаллов под заданный угол среза на притирочной плите шлифпорошком с керосином. Проверка и шлифование контрольных сторон блока под угольник.

7. Повторить пункты со 2го по 6 до устранения отклонения положения кристаллографической плоскости (111). Допуск отклонения ± 10´.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 1063; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.