Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Масляный клин.




Износ.

Жидкостное трение.

О режиме жидкостного трения можно говорить, когда движущиеся поверхности полностью разделены толстой пленкой смазки и непосредственный контакт элементов пары отсутствует. Трение в этом случае сводится к вязкостному сопротивлению в самом слое смазки, обусловленному сдвигом соседних слоев пленки, т.е. к внутреннему трению. Пока такая жидкая пленка цела, материал движущихся поверхностей и их шероховатость не имеют значения. От жидкой пленки требуется, чтобы она прилипала к движущимся поверхностям, т.е. чтобы не было проскальзывания смазки относительно поверхностей.

Случаи жидкостного и граничного трения сопоставляются на рис. 9.где A – движущаяся поверхность, B – неподвижная поверхность, а C – пленка. Шероховатость поверхностей для наглядности сильно преувеличена. В условиях граничного трения (рис. 9а) некоторые выступы соприкасаются друг с другом. В случае же жидкостного трения (рис. 9б) движущиеся части полностью разделены достаточно толстой пленкой смазки

Рис 9.

В режиме сухого или граничного трения противолежащие выступы контактирующих поверхностей трутся друг о друга и изнашиваются. По степени и характеру фрикционный износ может варьироваться в широких пределах от желательного (специальная операция тонкого полирования – притирки – в контролируемых условиях) до истирания, заедания и разрушения.

 

 

Если пока не учитывать влияния химического состава смазочного материала, то можно представить себе несколько упрощенный механизм износа контактной пары, работающей в условиях граничного трения. В точках локального контакта возникают напряжения сдвига, превышающие предел упругости, а температура материала повышается. Происходит срыв материала с верхушек выступов, а из-за своей ограниченной подвижности соседние молекулы смазки не успевают закрыть обнажившиеся участки контактной поверхности; они остаются чистыми и химически активными. В результате образуются и при дальнейшем движении тут же разрушаются многочисленные мостики микросварки двух соприкасающихся поверхностей. При этом механическая энергия движения преобразуется в тепловую с повышением температуры поверхности. Разрыв мостиков микросварки дополнительно приводит к локальному резкому и значительному повышению температуры. В результате начинается химическое разложение смазки с образованием окислов, карбидов и смолистых отложений и медленно, но неуклонно снижается качество смазки. Ухудшение состояния поверхностей трения ускоряется из-за абразивного действия множества оторвавшихся частичек материала контактной пары. Все эти эффекты приводят к общему усилению трения, увеличению энергетических затрат и интенсификации износа.

 

Очевидно, что работа машин и механизмов в условиях граничного трения крайне нежелательна по двум причинам: из-за потерь энергии и из-за риска отказа трущихся элементов вследствие неизбежного их изнашивания. Для эффективной работы системы (с небольшим трением и без износа) необходимо, чтобы трущиеся элементы были всегда и полностью разделены слоем смазки при их движении и полностью разделены в период отсутствия движения.

 

Первое из этих требований выполняется путем оптимизации проектирования. При вращении шипа (шейки вала) в подшипнике в условиях жидкостного трения за счет внутреннего давления жидкости автоматически поддерживается такая толщина пленки смазочного материала, при которой поверхности кинематической пары, пока она работает, не могут прийти в прямое соприкосновение. Когда же машина останавливается, гидравлический подпор шейки вала в подшипнике прекращается, и толщина пленки смазки под шейкой уменьшается вследствие ее выдавливания силой тяжести вала. Само по себе это не страшно, но при последующем включении машины проходит некоторое время, пока не установится режим жидкостного трения. В этот начальный период подшипник работает в условиях граничного трения. В тяжелом механическом оборудовании некоторых типов предусматривается подача смазки в подшипник под давлением через отверстия и по канавкам в области контакта, благодаря чему перед пуском создается достаточно толстая, полностью защищающая поверхности контакта смазочная пленка.

.

 

 

Принцип масляного клина позволяет пленке смазки нести значительную нагрузку. На рис. 5,а показано распределение скоростей, возникающее в соответствии с изложенным выше при движении пластины под неподвижным клином. При этом не учитывается, с одной стороны, сравнительно небольшое влияние инерции на распределение скоростей, а с другой – очень важное выдавливающее действие, которое будет рассмотрено ниже. Таким образом, на рис. 5,а представлено только влияние вязкости. Площадь треугольника MNO больше площади треугольника STU (разница – треугольник MXO), и это свидетельствует о поперечном перетекании жидкости, вызванном повышением давления в пленке. Клин давит вниз на пленку и благодаря своей форме создает рассмотренный ранее эффект приближения верхней пластины к нижней (рис. 4,в). Единственное различие состоит в том, что теперь верхняя пластина представляет собой клин, а поэтому через сечение MN выдавливается больше масла, чем через сечение ST. Это выдавливающее действие показано на рис. 5,б. В некотором сечении PQ горизонтальная скорость выдавливания равна нулю, а давление в жидкости максимально.

 

 

Реальное распределение скоростей определяется путем наложения эффектов вязкостного увлечения жидкости движущейся пластиной и выдавливания (рис. 5,в). Распределение давления по поверхности клина показано на рис. 5,г.

В 1883 Б.Тауэр сделал важное открытие – он установил, что в клинообразной пленке между движущимися поверхностями устанавливается давление, удерживающее нагрузку. Это открытие сыграло неоценимую роль в машиностроении, открыв путь практическому применению гидродинамических принципов смазки.

 




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 2171; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.