Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Типы инжекторных систем




В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются карбюраторные двигатели почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.

 

Рис. 3. Схема одноточечного впрыска

 

Более совершенными являются системы многоточечного впрыска, в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:

1) возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;

2) бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.

 

 

Рис. 4. Схема многоточечного впрыска

 

Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» моторы (в особенности при спокойной езде на невысокой скорости); при одинаковом рабочем объеме они обеспечивают более интенсивное ускорение автомобиля; у них чище выхлоп; они гарантируют более высокую литровую мощность за счет большей степени сжатия и эффекта охлаждения воздуха при испарении топлива в цилиндрах. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.

А как раз главное несоответствие между ГОСТами, ныне действующими в России и Украине, и евростандартами – это повышенное содержание серы, ароматических углеводородов и бензола. Например, российско-украинский стандарт допускает наличие 500 мг серы в 1 кг топлива, тогда как "Евро-3"- 150 мг, «Евро-4»- лишь 50 мг, а «Евро-5»- всего 10 мг. Сера и вода способны активизировать коррозионные процессы на поверхности деталей, а мусор является источником абразивного износа калиброванных отверстий форсунок и плунжерных пар насосов. В результате износа снижается рабочее давление насоса и ухудшается качество распыления бензина. Все это отражается на характеристиках двигателей и равномерности их работы.

Двигатель с непосредственным впрыском может работать в режиме сгорания сверхобедненной топливовоздушной смеси: соотношение воздуха и топлива по массе до 30-40:1. Максимально возможное для традиционных инжекторных двигателей с распределенным впрыском соотношение равно 20-24:1 (стоит напомнить, что оптимальный, так называемый стехиометрический, состав - 14,7:1) - если избыток воздуха будет больше, переобедненная смесь просто не воспламенится.

 

Рис. 5. Схема непосредственного впрыска

 

На двигателе с непосредственным впрыском распыленное топливо находится в цилиндре в виде облака, сосредоточенного в районе свечи зажигания. Поэтому, хотя в целом смесь переобедненная, у свечи зажигания она близка к стехиометрическому составу и легко воспламеняется. В то же время, обедненная смесь в остальном объеме имеет намного меньшую склонность к детонации, чем стехиометрическая. Последнее обстоятельство позволяет повысить степень сжатия, а значит увеличить и мощность, и крутящий момент. За счет того, что при впрыскивании и испарении в цилиндр топлива, воздушный заряд охлаждается - несколько улучшается наполнение цилиндров, а также снова снижается вероятность возникновения детонации.

Режимы работы двигателя с непосредственным впрыском

1) Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия).

2) Мощностной режим (впрыск на такте впуска).

3) Двухстадийный режим (впрыск на тактах впуска и сжатия).

Режим сгорания сверхбедной смеси (впрыск топлива на такте сжатия). Этот режим используется при малых нагрузках: при спокойной городской езде и при движении за городом с постоянной скоростью (до 120 км/ч). Топливо впрыскивается компактным факелом в конце такта сжатия в направлении поршня, отражается от него, смешивается с воздухом и испаряется, направляясь в зону свечи зажигания. Хотя в основном объеме камеры сгорания смесь чрезвычайно обеднена, заряд в районе свечи достаточно обогащен, чтобы воспламениться от искры и поджечь остальную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

Работа двигателя на сильнообедненной смеси поставила новую проблему - нейтрализацию отработавших газов, т.к. при этом режиме основную их долю составляют оксиды азота, и поэтому обычный каталитический нейтрализатор становится малоэффективным. Для решения этой задачи была применена рециркуляция отработавших газов (EGR-Exhaust Gas Recirculation), которая резко снижает количество образующихся оксидов азота и установлен дополнительный NO-катализатор.

Система EGR «разбавляя» топливо-воздушную смесь отработавшими газами, снижает температуру горения в камере сгорания, тем самым «приглушая» активное образование вредных оксидов, в том числе NOx. Однако обеспечить полную и стабильную нейтрализацию NOx только за счет EGR невозможно, так как при увеличении нагрузки на двигатель количество перепускаемых ОГ должно быть уменьшено. Поэтому на двигатель с непосредственным впрыском был внедрен NO-катализатор.

Существует две разновидности катализаторов для уменьшения выбросов NOx - селективные (Selective Reduction Type) и накопительного типа (NOx Trap Type). Катализаторы накопительного типа более эффективны, но чрезвычайно чувствительны к высокосернистым топливам, чему менее подвержены селективные. В соответствии с этим, накопительные катализаторы устнавливаются на модели для стран с низким содержанием серы в бензине, и селективные - для остальных.

Мощностной режим (впрыск на такте впуска). Так называемый «режим однородного смесеобразования» используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. Топливо впрыскивается на такте впуска коническим факелом, перемешиваясь с воздухом и образуя однородную смесь, как в обычном двигателе с распределенным впрыском. Состав смеси - близок к стехиометрическому (14,7:1)

Двухстадийный режим (впрыск на тактах впуска и сжатия). Этот режим позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора. Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации возрастает. Поэтому впрыск осуществляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр заполняется сверхбедной смесью (примерно 60:1), в которой детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, которая доводит соотношение воздуха и топлива в цилиндре до «богатого» 12:1.

4. СИСТЕМА ВПРЫСКА «K-JETRONIK» («К-Джетроник»)

Система впрыска «K-Jetronic» фирмы BOSCH представляет собой механическую систему постоянного впрыска топлива. Топливо под давлением поступает к форсункам, установленным перед впускными клапанами во впускном коллекторе. Форсунка непрерывно распыляет топливо, поступающее под давлением. Давление топлива (расход) зависит от нагрузки двигателя (от разрежения во впускном коллекторе) и от температуры охлаждающей жидкости.

Количество подводимого воздуха постоянно измеряется расходомером, а количество впрыскиваемого топлива строго пропорционально (1:14,7) количеству поступающего воздуха (за исключением ряда режимов работы двигателя, таких как пуск холодного двигателя, работа под полной нагрузкой и т.д.) и регулируется дозатором- распределителем топлива. Дозатор-распределитель или регулятор состава и количества рабочей смеси состоит из регулятора количества топлива и расходомера воздуха. Регулирование количества топлива обеспечивается распределителем, управляемым расходомером воздуха и регулятором управляющего давления. В свою очередь воздействие регулятора управляющего давления определяется величиной подводимого к нему разрежения во впускном трубопроводе и температурой жидкости системы охлаждения двигателя.

Рис. 6. Схема главной дозирующей системы и системы холостого хода системы впрыска "K-Jetronic": 1-топливный бак, 2-топливный насос, 3‑накопитель топлива, 4-топливный фильтр, 5-напорный диск расходомера воздуха, 6-дозатор-распределитель количества топлива, 7-регулятор давления питания, 8 — регулятор управляющего давления, 9-форсунка (инжектор), 10‑регулировочный винт холостого хода, 11-дроссельная заслонка. Каналы: А‑подвод топлива к дозатору-распределителю, В-слив топлива в бак, С-канал управляющего давления, D-канал толчкового клапана, E-подвод топлива к форсункам.

Принцип действия. главная дозирующая система и система холостого хода. Топливный насос 2, (рис. 6), забирает топливо из бака 1 и подает его под давлением около 0,5 МПа через накопитель 3 и фильтр 4 к каналу "А" дозатора-распределителя 6. Дроссельная заслонка 11 регулирует подачу чистого воздуха.

Для того, чтобы установить требуемое соотношение между количеством поступающего воздуха и количеством впрыскиваемого бензина используется расходомер воздуха с так называемым напорным диском 5 и дозатор‑распределитель топлива 6. Напорный диск 5 перемещается пропорционально расходу воздуха.

Расходомер воздуха представляет собой прецизионный механизм. Напорный диск его очень легкий (толщина примерно 1 мм, диаметр - 100 мм) крепится к рычагу, с другой стороны рычага (см. рис. 6) установлен балансир, уравновешивающий всю систему. С учетом того, что ось вращения рычага лежит в опорах с минимальным трением (подшипники качения), диск очень "чутко" реагирует на изменение расхода воздуха. Направления перемещений на рис. 6 показаны стрелками.

На оси вращения рычага напорного диска 5 закреплен второй рычаг с регулировочным винтом и роликом. Ролик упирается непосредственно в нижний конец плунжера дозатора-распределителя. Наличие регулировочного винта позволяет изменять состав рабочей смеси. Положение винта регулируется на заводе-изготовителе.

Из дозатора-распределителя топливо по каналам "Е" поступает к форсункам впрыска 9, (см. рис. 6). Для получения соответствия состава рабочей смеси режиму работы двигателя в системе впрыска со стороны верхней части плунжера (см. рис. 6) в распределитель подходит по каналу "С" управляющее давление. Величина последнего определяется регулятором управляющего давления 8. Это давление в зависимости от режима работы двигателя имеет большую или меньшую величину. В первом случае сопротивление перемещению плунжера увеличивается — смесь обедняется. Во втором случае, напротив, сопротивление перемещению плунжера уменьшается — смесь становится богаче.

Бензиновый электрический насос 2 (см. рис. 6) работает независимо от частоты вращения коленчатого вала двигателя. Он включается при двух условиях, когда включено зажигание и вращается коленчатый вал. Насос имеет запасы: по давлению двукратный, по подаче - десятикратный, поэтому система впрыска должна иметь регулятор давления питания. Этот регулятор 7, (см. рис. 6) встроен в дозатор-распределитель, соединен с каналом «А» (подвод топлива), по каналу «В» осуществляется слив излишнего топлива в бак, канал «D» соединен с регулятором управляющего давления 8.

Холостой ход карбюраторных двигателей регулируется двумя винтами: количества и качества смеси. Система питания с впрыском топлива также имеет два винта: винт качества (состава) рабочей смеси, этим винтом регулируется содержание СО в отработавших газах, и винт количества смеси 10, этим винтом устанавливается частота вращения коленчатого вала двигателя на холостом ходу.

Рис. 7. Взаимосвязь открытия дроссельной заслонки, перемещения
напорного диска и увеличения частоты вращения коленчатого вала
(система "K-Jetronic")

Одним из режимов работы автомобильного двигателя является резкое открытие дроссельной заслонки. При системе впрыска обогащение обеспечивается почти мгновенной реакцией напорного диска (рис. 7).

При пуске двигателя электронасос 2 (рис. 8), практически мгновенно создает давление в системе. Если двигатель прогрет (температура не менее 35°С) термореле 12 выключает пусковую форсунку 11 с электромагнитным управлением. В момент пуска холодного двигателя и в течение определенного времени пусковая форсунка впрыскивает во впускной коллектор дополнительное количество топлива.

Продолжительность работы пусковой форсунки определяет термореле в зависимости от температуры охлаждающей жидкости. Клапан 13 обеспечивает подвод к двигателю дополнительного количества воздуха для повышения частоты вращения коленчатого вала холодного двигателя на холостом ходу. Дополнительное обогащение топливовоздушной смеси при пуске и прогреве холодного двигателя достигается за счет более свободного подъема плунжера распределителя дозатора-распределителя благодаря тому, что регулятор управляющего давления 8 снижает над плунжером противодействующее давление возврата.

Таким образом, если двигатель уже прогрет, питание осуществляется только через главную дозирующую систему и систему холостого хода, (см. рис. 6). При этом, термореле 12 (см. рис. 8), пусковая электромагнитная форсунка 11 и клапан добавочного воздуха 13 в работе не участвуют. При пуске и прогреве холодного двигателя все перечисленные элементы системы впрыска включаются в работу, обеспечивая надежный запуск и стабильную работу двигателя на холостом ходу.

 

 

Рис. 8. Схема системы впрыска топлива "K-Jetronic":
1 - топливный бак, 2 - топливный насос, 3 - накопитель топлива, 4 - топливный фильтр, 5 - расходомер воздуха, 6 - дозатор-распределитель, 7 - регулятор давления питания, 8 - регулятор управляющего давления, 9 - форсунка впрыска, 10 - регулировочный винт холостого хода, 11 - пусковая электромагнитная форсунка, 12 - термореле, 13 - клапан добавочного воздуха, 14 - дроссельная заслонка. Каналы: А - подвод топлива к дозатору-распределителю, В - слив топлива в бак, С - канал управляющего давления, D - канал толчкового клапана, Е - подвод топлива к рабочим форсункам, F - подвод топлива к пусковой форсунке с электромагнитным управлением.

Форсунки впрыска открываются автоматически под давлением и не осуществляют дозирование топлива (рис. 9). Угол конуса распыливания топлива примерно 35° (у пусковой форсунки 80°). Форсунки выпускаемые, например, фирмой Bosch чрезвычайно разнообразны, "свои" форсунки разработаны для каждой модели автомобиля и двигателя, кроме того конструкция форсунок постоянно совершенствуется. Таким образом каждая форсунка предназначена только для конкретного автомобиля и двигателя определенных лет выпуска.


Рис. 9. Форсунки (инжекторы) впрыска топлива:
а, б - клапанные, в - закрытая, г - штифтовая

 

Диапазон давления открытия форсунок (начало впрыска) 0,27‑0,52 МПа. Отдельные фирмы указывают давление начала впрыска для новых и приработавшихся форсунок. Также регламентируется производительность форсунок: в режиме холостого хода 25-30 см3/мин, при режиме полной нагрузки 80 см3/мин. Важным показателем форсунки впрыска является давление, соответствующее закрытому состоянию форсунок, например, на автомобиле с диапазоном начала открытия форсунок 0,45-0,52 МПа, давление соответствующее закрытому состоянию (давление слива) установлено в 0,25 МПа. При таком давлении допускается не более одной капли топлива из распылителя форсунки за 1 мин.

5. СИСТЕМА ВПРЫСКА «KE-JETRONIK» («КЕ-Джетроник»)

Система впрыска «KE-Jetronic» это механическая система постоянного впрыска топлива, подобная системе «K-Jetronic», но с электронным блоком управления (E-Elektronik). В системе «KE-Jetronic» регулятор управляющего давления заменен электрогидравлическим регулятором.

Кроме этого, система имеет: установленный на рычаге расходомера воздуха потенциометр (реостатный датчик) и выключатель положения дроссельной заслонки. Потенциометр сообщает электрическими сигналами в электронный блок управления информацию о положении напорного диска расходомера воздуха. Положение напорного диска определяется расходом воздуха (разрежением во впускном трубопроводе, положением дроссельной заслонки, нагрузкой двигателя).

Принцип действия, главная дозирующая система и система холостого хода. Форсунки 11 (рис. 10), распыливают топливо, количество которого определяется его давлением в зависимости от нагрузки (от разрежения во впускном коллекторе) и от температуры охлаждающей жидкости.

Регулирование количества топлива обеспечивается дозатором-распределителем 5, управляемым расходомером воздуха 6 и электрогидравлическим регулятором управляющего давления 9, управляемым электронным блоком управления 16 по сигналам датчика температуры охлаждающей жидкости двигателя 13, выключателя положения дроссельной заслонки 7 и датчика частоты вращения коленчатого вала двигателя. В настоящее время применяются индуктивные датчики, которые закрепляются на картере маховика, а их "чувствительная" часть располагается над зубчатым венцом маховика. При прохождении зуба мимо датчика в его обмотке генерируется ЭДС. Применяются датчики и на основе эффекта Холла, которые лучше индуктивных, но сложнее и дороже.

Система впрыска (рис. 10) работает следующим образом. Электронасос 2 забирает топливо из бака и подает его под давлением к дозатору-распределителю топлива 5 через топливный фильтр 3 и накопитель 4.

 

Рис. 10. Схема системы впрыска "KE-Jetronic":
1 - топливный бак, 2 - топливный насос, 3 - топливный фильтр, 4 - накопитель топлива, 5 - дозатор-распределитель количества топлива, б - расходомер воздуха, 7 - выключатель положения дроссельной заслонки, 8 - клапан дополнительной подачи воздуха, 9 - электрогидравлический регулятор управляющего давления (противодавления), 10 - регулятор давления топлива в системе, 11 - форсунка (инжектор), 12 - пусковая электромагнитная форсунка, 13 - датчик температуры охлаждающей жидкости, 14 - термореле, 15 - датчик-распределитель, 16 - электронный блок управления. Каналы: А - подвод топлива (давление системы), В - слив топлива в бак, С - канал управляющего давления (в дозаторе-распределителе), D - канал регулятора давления, Е - подвод топлива к форсункам, F - подвод топлива к пусковой электромагнитной форсунке.

Топливо поступает в верхние камеры дифференциальных клапанов дозатора - распределителя под давлением, которое изменяется регулятором 10 в зависимости от положения плунжера распределителя. Количество топлива, поступающего к рабочим форсункам 11, регулируется диафрагмой дифференциальных клапанов, прижимаемой управляющим давлением (противодавлением) к выходным отверстиям (трубкам форсунок).

В отличие от системы "K-Jetronic", управляющее давление к верхнему торцу плунжера распределителя в системе "KE-Jetronic" не подводится.

Регулятор управляющего давления 9 представляет собой электроклапан, управляемый электронным блоком 16. При работе главной дозирующей системы меняется положение биметаллической пластины. При увеличении частоты вращения коленчатого вала (ускорение) верх пластины отклоняется вправо, отверстие подвода топлива к регулятору прикрывается. При уменьшении частоты вращения коленчатого вала (замедление) верх пластины отклоняется влево, отверстие подвода топлива к регулятору увеличивается. При равномерной работе двигателя (постоянной частоте вращения коленчатого вала) пластина находится в выпрямленном состоянии.

Потенциометр напорного диска и выключатель положения дроссельной заслонки передают в электронный блок управления информацию о текущей нагрузке двигателя и о "поведении" дроссельной заслонки. В свою очередь, электронный блок управления через электрогидравлический регулятор управляющего давления корректирует воздействие перемещений напорного диска на плунжер распределителя. Например, при резком нажатии на педаль «газа», («взаимосвязь» открытия дроссельной заслонки, перемещения напорного диска и роста частоты вращения коленчатого вала (см. рис. 7) электронный блок управления различает, ускорение ли это движения автомобиля или просто увеличение частоты вращения коленчатого вала двигателя на холостом ходу.

При полной нагрузке сигнал от выключателя положения дроссельной заслонки поступает в электронный блок управления, последний через регулятор управляющего давления дозатора-распределителя обогащает смесь.

Система холостого хода, представленная на рис. 10, почти не отличается от системы холостого хода "K-Jetronic". Параллельно каналу дроссельной заслонки идут еще два воздушных канала. В одном установлен конический винт регулировки холостого хода (винт количества), которым поддерживается минимальное разрежение в расходомере воздуха 6 под диском, и обеспечивается работа двигателя на холостом ходу. Клапан дополнительной подачи воздуха 8 работает при холодном пуске и прогреве двигателя аналогично системе "K-Jetronic".

Система пуска. Электронасос 2 (см. рис. 10) при пуске мгновенно создает давление в системе. В течение определенного времени, зависящего от температуры охлаждающей жидкости, пусковая форсунка 12 распыляет топливо во впускной трубопровод, что обеспечивает обогащение смеси и надежный запуск холодного двигателя. Время работы пусковой форсунки определяет также, как и в системе "K-Jetronic", термореле 14.

Клапан 8 открывает доступ во впускной трубопровод добавочному воздуху, обеспечивая тем самым увеличение частоты вращения коленчатого вала на холостом ходу при прогреве двигателя.

Электронный блок, получая текущую информацию о частоте вращения коленчатого вала двигателя, корректирует ее, воздействуя на электромагнитный регулятор холостого хода, работающий на всех температурных режимах двигателя.

Обогащение смеси у холодного двигателя осуществляется регулятором управляющего давления 9 (см. рис. 10), который уменьшает противодавление в нижних камерах дифференциальных клапанов, при этом биметаллическая пластина регулятора отклоняется вправо. Обогащение смеси прекращается по сигналу датчика температуры охлаждающей жидкости 13. Электронный блок управления получает сигнал о текущей температуре двигателя в виде величины сопротивления датчика. На основании этого блок выдает соответствующую команду на электрогидравлический регулятор управляющего давления, который изменяет это управляющее давление и тем самым - состав смеси.

Дозатор-распределитель, регулятор управляющего давления, регулятор давления топлива в системе. Принципиальное отличие дозатора-распределителя "KE-Jetronic" от "K-Jetronic" в том, что: уже нет необходимости устанавливать регулятор управляющего давления на блоке цилиндров двигателя и подводить к нему вакуум, он встроен непосредственно в дозатор‑распределитель (рис. 11); управляющее давление подводится не к плунжеру распределителя сверху, а в дифференциальный клапан снизу.

Рис. 11. Дозатор-распределитель и регулятор давления система впрыска
«KE-Jetronic»:
1 - электрогидравлический регулятор управляющего давления, 2 - обмотка клапана, 3 - биметаллическая пластина электроклапана, 4 - дифференциальный клапан, 5 - гильза распределителя, б - плунжер распределителя, 7 - регулятор давления топлива в системе. Каналы: А - подвод топлива (давление системы), В - слив топлива в бак, С - канал управляющего давления, D - канал регулятора давления, Е - подвод топлива к форсункам впрыска, F - подвод топлива к пусковой электромагнитной форсунке.

В верхние камеры дифференциальных клапанов (см. рис. 11) подводится рабочее давление системы, оно же «зафиксированное» демпфирующим дросселем действует над плунжером распределителя. В нижних камерах присутствует давление управления.

Регулятор 10 давления топлива в системе (см. рис. 10, 11) не только устанавливает диапазон изменения давления в системе питания, но и регулирует дифференциальное давление (разность давлений между верхними и нижними камерами дифференциальных клапанов).

При постоянной частоте вращения коленчатого вал двигателя, как отмечалось, биметаллическая пластина находится в положении показанном на рис. 12, а.

При снижении частоты вращения коленчатого вала или при принудительном холостом ходе (торможение двигателем), когда дроссельная заслонка закрыта, а частота вращения коленчатого вала более 1700 об/мин, по сигналу датчика положения дроссельной заслонки электронным блоком управления подается команда регулятору управляющего давления, который полностью открывается, (см. рис. 12, б). В нижних камерах дифференциальных клапанов создается давление равное давлению подачи топлива. Поступление топлива к рабочим форсункам резко сокращается.

При увеличении частоты вращения коленчатого вала при открытии дроссельной заслонки происходит обогащение смеси путем снижения управляющего давления регулятором, (см. рис. 12, в). При этом воздействие электронного блока управления на регулятор определяется сигналами от потенциометра напорного диска и датчика дроссельной заслонки. Последний сообщает о положении дроссельной заслонки и скорости ее открытия. При системе "K-Jetronic" обогащение при быстром открытии дроссельной заслонки осуществлялось только за счет быстрого перемещения напорного диска.


Рис. 12. Режимы работы дозатора-распределителя:

а - нормальная (с постоянной частотой вращения коленчатого вала) работа двигателя, б - снижение частоты вращения коленчатого вала, в - пуск холодного двигателя, увеличение частоты вращения коленчатого вала. Каналы: А - подвод топлива, С - подвод управляющего давления в нижнюю камеру дифференциального клапана, D - каналы регулятора давления в системе, Е - подвод топлива к форсункам впрыска, F - подвод топлива к пусковой электромагнитной форсунке.

Обогащение смеси при холодном пуске и прогреве происходит в соответствии с сигналами датчика температуры двигателя по цепочке: датчик (сигнал) - электронный блок управления (команда) - регулятор управляющего давления (изгиб пластины) - дифференциальные клапаны (прогиб вниз диафрагмы) (см. рис. 12, в).

Обогащение смеси при полной нагрузке двигателя происходит, как отмечалось, по сигналу от датчика дроссельной заслонки.

Лямбда-регулирование. На части автомобилей для получения более рационального дозирования топлива применяется обратная связь - от отработавших газов - к составу смеси. При этом в электронный блок управления подаются сигналы от лямбда-зонда или датчика кислорода (фиксируется свободный кислород), размещенного в выпускном трубопроводе двигателя.

Сигнал лямбда-зонда регистрируется электронным блоком управления и преобразуется в команду для регулятора управляющего давления, который изменяет давление управления и тем самым обогащает или обедняет смесь.

Датчики кислорода работают обычно в диапазоне температур 350-900°С. Принцип действия применяемых датчиков различный.

Циркониевый датчик (используется керамический элемент на основе двуокиси циркония ZrО2, покрытый платиной) - гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Циркониевые датчики, формируют (создают) электрический сигнал, и являются наиболее распространенными.

Титановые датчики (используется двуокись титана ТiO2) применяются реже и представляют собой резисторы, сопротивление которых меняется в зависимости от температуры и наличия кислорода в окружающей среде. Можно сказать, что эти датчики в принципе работают также, как и датчики температуры двигателя.

Лямбда-зонды применяются обогреваемые и не обогреваемые. Обогреваемые зонды, как правило, находятся несколько дальше от выпускного коллектора в выпускном трубопроводе. Без обогрева они достигали бы своей рабочей температуры при пуске двигателя с задержкой. Главная же цель электрического обогрева зондов - включение их в работу, когда температура, контактирующих с ними отработавших газов ниже 350°С.

При помощи датчиков концентрации кислорода в отработавших газах удается оптимизировать состав рабочей смеси только по токсичности выхлопа при определенных режимах работы двигателя. Применяются эти датчики, как правило, совместно с нейтрализаторами отработавших газов.

Электрическая схема системы впрыска. Электрическая схема системы «KE-Jetronic» представлена на рис. 13 (представлен один из вариантов электросхемы системы впрыска топлива «KE-Jetronic»).

Рис. 13. Электрическая схема системы впрыска «KE-Jetronic»:




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1811; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.221 сек.