Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Современные методы регистрации биопотенциалов

Регистрация биопотенциалов осуществляется с помощью специальных методов исследования электровозбудимых мембран, различающиеся вне- и внутриклеточными способами отведения мембранного потенциала.

Исследования ПД методами внеклеточного отведения в настоящее время производятся редко, так как они имеют один существенный недостаток, мешающий регистрировать электрические параметры одной клетки. Он проявляется в значительном внеклеточном шунтировании параметров потенциала из-за недостаточно плотного контакта регистрирующего устройства с биологической мембраной. С другой стороны, простота и доступность этого способа регистрации электрических параметров позволило его широко использовать в диагностической практике для регистрации суммарного потенциала электровозбудимых тканей (ЭКГ, ЭМГ, ЭЭГ и т.д.).

Метод сахарозного мостика является внеклеточным способом регистрации параметров ПД. Использование изолирующих межклеточные участки сахарозных протоков (мостиков) позволяет ограничить внеклеточное шунтирование и достаточно уверенно регистрировать параметры биопотенциалов (Рис.18).

Рис.18. Схема метода двойного сахарозного мостика.   1- биологический объект; 2-изолирующих межклеточные участки сахарозных протоков (мостиков) 3-поток раствора Кребса – рабочая камера; 4-регистрирующие электроды; 5-раздражающие электроды.  

Основное развитие в настоящее время получила техника внутриклеточного отведения параметров биопотенциалов. С помощью микроэлектродов, много меньших, чем гиганские одиночные клетки по размерам (0,5-1 мкм против 100 мкм), прокалывалась биологическая мембрана, и регистрировались электрические параметры внутриклеточного содержимого (Рис.8).

Изменение материалов, из которых изготовлялись микроэлектроды, происходило одновременно с техническим прогрессом по пути использования металлов, стекла, полимеров и снова стекла. Применимость и точность этого способа регистрации мембранных потенциалов подтверждают уникальные эксперименты многократного введения микроэлектродов внутрь одной клетки при незначительном изменении значений биопотенциалов.

Возможности микроэлектродной техники позволили регистрировать ионный ток, протекающий через мембрану в момент развития ПД. Для этого использовался метод фиксации потенциала (clamp-voltage), представляющий электронную схему поддержания постоянного уровня мембранного потенциала за счет источника обратной Э.Д.С., включенной через усилитель с обратной связью. На Рис.9 представлен один из вариантов такой схемы с соответствующими блоками и объектом – биологической мембраной.

   

Точные измерения значений ионных токов из-за своих малых величин при методе clamp-voltage осложнялись возможностью их шунтирования на границе микроэлектрод-мембрана, существующей даже при достаточно высоком мегаомном (106 Ом·см) удельном сопротивлении контакта с клеткой.

Настоящий прорыв в данной области был совершен при достижении контакта с клеткой гигоомных (109 Ом·см) значений удельного сопротивления контакта микроэлектрода и объекта. Особые материалы и способы заточки микроэлектродов позволили регистрировать на целой клетке (whole cell) и на участках мембраны (pach clamp) динамику одиночных ионных токов. Возможные модификации этого метода представлены на Рис.10

 

Ионная природа потенциала действия (ПД). Формальное описание ионных токов

ПД, регистрируемый впервые на гигантском (до 500 мкм в диаметре) аксоне кальмара, состоит из нескольких фаз (Рис. 11).

 

Исходно от уровня потенциала покоя (-90 мВ) начинается I-я фаза деполяризации, сменяющаяся на уровне нулевого (0 мВ) мембранного потенциала противоположным знаком овершутом (+ 40 мВ) и затем переходящая в II-ю фазу реполяризации по пути возвращения значений мембранного потенциала к потенциалу покоя. Отклонения от пути возвращения называют III-й фазой – следовым потенциалом:

А) положительным – при продолжающейся реполяризации.

Б) отрицательный – при развитии деполяризации.

Метод фиксации потенциала и модификации ионного состава растворов позволили вскрыть ионные механизмы каждой фазы ПД.

Основное участие в развитии фазы деполяризации принимает входящий в клетку поток положительных ионов натрия (Na+), перезаряжающих внутреннюю поверхность мембраны. На смену быстрой активации натриевой проницаемости пороговым раздражителем приходят процессы инактивации входа Na+ и активации выхода из клетки ионов калия (K+), что проявляется фазой реполяризации – возвращения зарядов на внутренней поверхности мембраны к отрицательным значениям.

С помощью ряда упрощений Ходжкину и Хаксли (1950) в виде уравнений удалось произвести формальное (математическое) описание кинетики ионных токов электровозбудимой мембраны. По их мнению ионный ток (I) складывается из суммы натриевого (INa) калиевого (IK) и тока утечки (Il):

В отличие от натриевого и калиевого тока, ток утечки не подчиняется потенциал-зависимым механизмам активации и инактивации.

Каждый из токов рассчитывается по закону Ома:

где: gNa, gK и gl – проводимость для ионов натрия, калия и ионов утечки соответственно. (V-V(Na,K,L)) – величины электрохимических потенциалов для соответствующих ионов, где V – является отклонением от абсолютных значений мембранного потенциала Е, а V(Na,K,L)) – равновесные потенциалы, рассчитанные по уравнению Нернста.

С помощью выражений:

и соответственно: откуда:

Для гигантского аксона кальмара:

ЕNa=+55мВ, ЕK= -72мВ, ЕL= -50мВ.

В свою очередь, величины ионных проводимостей мембраны равны:

где: gNa и gK – максимальные проводимости мембраны (при сильной деполяризации ĝ Na = 120 ммо/см2, ĝК = 36 ммо/см2, gl = 0,3 ммо/см2) для ионов натрия и калия соответственно.Величины m и n - переменные процесса активации, h - переменная инактивации.

Их значения в зависимости от мембранного потенциала изменяются в пределах от 0 до 1 и рассчитываются из системы дифференциальных уравнений:

где am, bm, an, bn, ah, bh- константы скоростей, зависящие от мембранного потенциала, температуры и концентрации двухвалентных ионов в наружном растворе, но не от времени. При деполяризации мембраны значения am, an и bh увеличиваются, а bm, bn и ah- уменьшаются. Решения этих уравнений проще представить в виде экспоненциальных характеристик – постоянных времени изменения m, n и h:

Стационарные значения переменных m, n и h будут равны:

Графики зависимости стационарных значений m, n и h (m¥, n¥ и h¥) и постоянных времени tm,tn и th от мембранного потенциала представлены на Рис. 12

 

На основании представленных выше теоретических выкладок Ходжкиным и Хаксли были рассчитаны параметры потенциала действия, которые сравнивались с экспериментальными.

В состав мембранного тока (Im) кроме ионной компоненты входит и емкостная составляющая: и тогда:

При поддержании потенциала на постоянном уровне (метод clamp-voltage) емкостная составляющая исчезает, и мембранный ток удается зарегистрировать как сумму натриевого и калиевого ионных токов (Рис.)

Использование блокаторов ионных каналов позволило получить отдельные вольт-амперные характеристики для натриевого и калиевого ионных токов и вскрыть ионные механизмы развития потенциала действия. На Рис. видно, что отличия рассчитанных и экспериментальных параметров незначительны.

Показанные изменения ионных проницаемостей (а) и ионных токов (б), рассчитанные с помощью уравнений Ходжкина-Хаксли при возникновении ПД в гигантском аксоне кальмара (Рис.) в ответ на очень короткий стимул позволили избежать емкостной составляющей мембранного тока. Видно, что первый нуль Ii соответствует моменту, когда входящий натриевый ток становится равным выходящему ионному току Il+IK. Это момент критической деполяризации, когда локальный ответ начинает переходить в ПД. В начале этого периода PNa и INa совпадают с началом развития ПД, однако, затем ход изменений их становится разным:

1. Изменения PNa имеют одну вершину, совпадающую в максимальной точке с вершиной ПД.

2. Кривая изменений INa характеризуется двумя максимумами, из которых один приходится на примерно на середину восходящего ПД, а второй- на первую треть фазы реполяризации. Вершине ПД соответствует точка наибольшего падения кривой INa в области “седла” между двумя ее вершинами.

Различия в динамике изменения между PNa и INa обусловлены тем, PNa является прямым следствием деполяризации в момент ПД, а INa зависит также от электрохимического потенциала (V-VNa), величина которого по мере деполяризации снижается. В результате продолжающего компенсаторного возрастания PNa, INa продолжает нарастать до момента выравнивания V и VNa, когда суммарный ионный ток (Ii) и изменения ПД достигают максимума. Наличие емкостных свойств мембраны позволяет ПД нарастать еще некоторое время, даже в отсутствии усиления Ii. Остановка в нарастании ПД будет происходить при равенстве плотностей выходящих и входящих ионных токов, что соответствует максимальной величине ПД.

Преобладание выходящей компоненты ионных токов будет приводить развитию фазы реполяризации, которая будет замедляться вторичным повышением INa, связанным с увеличением электрохимического потенциала (V-VNa) при еще достаточно высоком PNa. В фазу реполяризации PNa падает сначала круто, а затем, более полого из-за усиления инактивации деполяризованной мембраны.

Расчеты, проведенные позже на миелиновых нервных волокнах в области перехвата Ранвье показали, что кинетика изменений ионных проницаемостей в момент развития ПД качественно не отличается от таковой в гигантском аксоне кальмара (см.Выше). Следует отметить характерную для перехватов Раньве более высокую (3 раза) скорость нарастания ПД. Известные же отличия в скорости проведения по мякотным и безмякотным нервным волокнам определяются, как показывают дальнейшие расчеты, параметрами сопротивления и емкости мембраны с таковыми в перехватах Ранвье. При высоких сопротивлениях миелиновой оболочки (до ГОм·см2), в области перехватов низко сопротивление мембраны (см. Ниже).

<== предыдущая лекция | следующая лекция ==>
Ионная теория электрогенеза Бернштейна | Проведение возбуждение по нервным волокнам
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 6161; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.